
 @2020 - Patrick-Gilles Maillot

OSC Documentation

for WING

©Patrick-Gilles Maillot 2 WING OSC – V 0.3.2

Table of Contents
Introduction .. 4

General features of the WING console ... 4

Sources vs. Inputs ... 6

WING Internal Data .. 7

WING File System ... 8

Remote communication with WING ... 10

Number of simultaneously connected applications ... 10

Access to WING Internal Data from remote programs ... 11

OSC Remote Protocol ... 11

OSC Data Types ... 11

WING OSC Messages .. 12

Reading (Get) Parameter and Node data ... 13

Receiving OSC data on a specific port... 14

Writing (Set) Parameter and Node data ... 15

Single Parameters ... 15

Node Data ... 15

OSC: Special Cases .. 17

Dynamic JSON Structure changes ... 17

OSC Tag Type ‘blob’ use.. 18

Subscribing to OSC Data ... 21

Effects and Plugins .. 22

Plugins .. 22

Effects ... 23

Effects and Plugins’ Parameters list .. 26

Standard effects.. 26

Premium effects ... 35

Filter plugins ... 42

Gate plugins .. 43

EQ plugins ... 46

Compressor plugins .. 50

Appendix: WING Icons .. 54

Appendix: WING Colors .. 56

Appendix: WING Snapshot and JSON Data Structure: .. 57

Global Snapfile .. 57

Descriptionn ... 57

scopes ... 58

ae_data ... 59

©Patrick-Gilles Maillot 3 WING OSC – V 0.3.2

ce_data ... 73

More JSON files .. 77

©Patrick-Gilles Maillot 4 WING OSC – V 0.3.2

Introduction
My name is Patrick-Gilles Maillot and I am authorized by Behringer to publish and maintain the “OSC

Remote Control Documentation for WING”, yet I am not a MusicTribe employee.

In 2019, Behringer has been designing a whole new digital mixing desk they would later call “personal

mixing console”. The WING was unveiled to the general public between in November 2019 and first

shipments took place in December. As to why calling it a “personal Mixing Console”, here is a perfectly

valid answer from one of the fathers of the console: “A fundamental idea of WING was providing a high

level of customization options to the engineer, allowing to adapt the console surface to his personal

preferences and needs”.

The WING console was awaited by a number of X32 and M32 users as it carried the promise of new

features, long expected since the first release the X32 and M32 family of digital mixing desks. It seems the

WING receives a warm welcome from the community.

General features of the WING console
The Behringer WING provides 48-channel, 28-bus mixing with 24 motorized, touch-sensitive faders and a

large 10” capacitive-touch LED screen. The desk is designed for live performance, live and studio

recording, touring sound, A/V, club installs, and more. Three separate fader sections and a custom

controls section can be easily and intuitively tailored to personal requirements.

WING focuses on sound sources as the reason for any mixing, having properties like headamp gain,

phantom power, source mutes and metering. Sources can be personalized with color, icon, name, and

several tags for grouping and filtering purposes. The 48 inputs and 28-channel bus mixes can all be in

mono/stereo or mid-side modes, keep headamp parameters like gain and phantom power, and with

specific source mutes and metering and provide dynamics, EQ and FX processing. They can also be

personalized with their own color, icon, name, and several tags for grouping and filtering purposes.

WING input channels provide low-cut & high-cut filters, tilt-EQs, all-pass or Sound Maxer, in addition to a

6-band parametric EQ. All buses, matrices, and mains feature 8-band parametric EQ. All channels and

buses can also load high-end simulations modeled from hardware devices such as Pultec EQ, SSL Bus

Compressor and Gate/Expander, SPL Transient Designer, Neve EQ, Compressor and Gate, Focusrite ISA

and D3, DBX160, LA-2A, 1176, Elysia mPressor, Empirical Labs Distressor, and more. The built in FX rack

supports 8 true stereo processors including TC VSS3 algorithms, Lexicon, Quantec, and EMT emulations.

Other processing includes modulation, equalization, dynamics, and nonlinear effects and four guitar

amplifiers with cabinet simulations. A maximum of 16 stereo inserts can be used for applying internal FX

or outboard processing to input channels or buses.

©Patrick-Gilles Maillot 5 WING OSC – V 0.3.2

The channel editing section provides instant channel status overview and flow of operation. It allows

working on the selected channel processing, even when the main display is used for something

completely unrelated. Touch-sensitive rotary controls allow you to display the most relevant information,

all at your fingertips.

The central Custom Controls section offers user-assignable controls including 4 rotary encoders and 20

buttons with 2 LCDs that can be set as functions readily available. A big rotary wheel offers fine-

adjustments of up to 8 user parameters or can be used for DAW remote control via USB MIDI. The control

configuration also includes predefined functionality for USB and SD-card recorder transport, show control

and mute groups.

WING includes 8 original MIDAS PRO microphone preamps and 8 XLR outputs with professional quality

specifications. 8 TRS line auxiliary ins and outs help bring in signals from media players or computers. A

brand new StageCONNECT interface allows connecting breakout boxes and delivers up to 32 channels of

low-latency input or output over a single standard XLR microphone cable.

WING can accommodate 374 inputs and 374 outputs thanks to 3 AES50 SuperMAC audio networking

ports, which connect to digital stageboxes. In addition, 144 input and 144 output streams can be shared

with other mixing consoles. There are 48 channels of USB audio and 64 channels of Audio over IP (AoIP

module optional), plus AES/EBU stereo I/O. The WING expansion card slot features the LIVE SD recording

card with 64x64 channels of audio or can accommodate option cards for various standards such as ADAT,

MADI, DANTE, and WSG.

All digital processing takes place on 40-bit floating point Digital Signal Processors, at 48 or 44.1 kHz, with a

1ms round-trip latency.

WING provides MIDI In/Out and 2x2 GPIO (General Purpose Input Output) that can be used as console

event triggers and external show controls.

Automixing is also implemented, with 2 groups of gain sharing on any 16 input channels. The management

of the respective input channel gains depends on the levels received, reducing the sum gain in the group

to maintain intelligibility and low noise during meetings, ideal when several speakers are collaborating to

corporate events, panels, broadcast applications or house of worship.

©Patrick-Gilles Maillot 6 WING OSC – V 0.3.2

Sources vs. Inputs
Unlike many digital or analogue desks, WING makes a clear separation between Sources and Input

channels; Normally, consoles focus on input numbers assigned to channels and auxes.

WING is offering a different perspective by focusing on the Source as the reason for any mixing. Sources

can be in mono, stereo or mid-side1 mode, own headamp parameters like gain and phantom power, with

specific source mute and metering. They can also be given a color, icon, name and several tags for

grouping and filtering purposes. All of this describes the actual Source first, before being patched to Input

channels which focus on processing or mixing.

Sources can be labelled using the WING Co-Pilot app or other means such as OSC protocol described later

in this document or the wapi function calls2, and no matter if the signal is patched to a channel, to SD

recording or to any other output, it can always be referred to as its assigned Source label.

Notes

The internal real-time clock (RTC) is powered by a super-capacitor. If the WING is powered off for more

than about two weeks it will most likely lose its clock data.

1 Mid/Side processing is a highly effective way of making adjustments to the spatialization perception of a mix or master. The Mid

channel is the center of a stereo image. When the Mid channel is boosted, the listener perceives a more centered (mono) sound

to the audio. The Side channel is the edges of a stereo image. When the Side channel is boosted, the listener perceives a more

spacious (wider) sound to the audio.
2 Described in a separate document. Refer to https://github.com/pmaillot/wapi

©Patrick-Gilles Maillot 7 WING OSC – V 0.3.2

WING Internal Data

Like all digital or programmable devices, WING relies on an internal set of parameters that are

stored/saved in non-volatile memory. This enables you to find the console in the same state you left it

when powering it OFF.

WING data set is very large, and in line with the many features the console offers. Each button, each

attribute, color setting, effect, parameter, etc. can be found as an internal variable.

The WING tree is more than 25000 elements! In order to organize this large set of internal variables,

WING uses a hierarchical tree of data, stating with a root and dispatching parameters into logical groups

(sub-trees or branches) until the last element (leaves) that represent the actual parameter.

For example, the fader associated to channel 1 is part of the channels sub-tree, and is one of the many

attributes of channel 1. The channel sub-tree is part of the audio-engine, itself at the root level.

A quick representation would be as shown below:

Computers use specific data structures to represent trees. WING uses one of them, based on JSON3

notation. It is important to know/understand the list of sub-trees (nodes), and leaves (parameters) WING

contains as this is how you can access to data. More detail on the WING data set is provided in appendix.

3 JavaScript Object Notation: an efficient way to represent structured objects. Also used as a data-interchange format.

root

audio-engine

Channels

ch 1

fader

color

other ...
...

ch n...

other

other

other

...

©Patrick-Gilles Maillot 8 WING OSC – V 0.3.2

WING File System
At the difference of the X32, WING can be directly connected to a computer via USB; There are two ways

WING can be visible to your computer, depending on the setting of the SETUP→GENERAL screen (shown

below):

WING can be seen as an OS PARTITION, or a directory where you can deposit the FW release you will use to

boot from at next power up or reboot. Use with caution!

If the choice in SETUP→GENERAL is set to DATA PARTITION, the connected WING presents itself as an external

disk drive. Therefore, the standard cautions apply when connecting and more important, disconnecting

from the computer; Ensure you unmount the WING file system to avoid losing data.

When connected, the WING file system is as follows (nodes in bold are real folder names):

©Patrick-Gilles Maillot 9 WING OSC – V 0.3.2

Below is a screenshot of the consecutive opening of directories library→globals→chi_presets, and

opening file SFHJ.chn (a JSON structure file), the PC being in DATA ACCESS mode over a USB connection:

©Patrick-Gilles Maillot 10 WING OSC – V 0.3.2

Remote communication with WING
WING communicates via ports 2222 [native UDP, TCP] and 2223 [OSC, UDP];

Initiating a communication with WING starts with sending the 5 bytes [UDP] datagram WING? to the IP of

your WING, port 2222.

WING will reply to the requesting IP and port with the following datagram:

‘WING,’ [c_ip] ‘,’ [c_name] ‘,’ [c_model] ‘,’ [c_serial] ‘,’ [firmware]

where

[c_ip] e.g. ‘192.168.1.62’
[c_name] ascii characters
[c_model] ‘ngc-full’ (standard Wing console)

[c_serial] serial number (ascii)

[firmware] version string (ascii)

General OSC communications take place over communication port 2223

Number of simultaneously connected applications
WING can simultaneously communicate with up to 16 ‘connected clients’; The console will reject further

connection requests, if the maximum number of simultaneous connections (16) is reached.

What we call ‘clients’ above refer to actual TCP ports that communicate with the console. Some

applications may use several ports and this will reduce the actual number of applications that can

simultaneously connect and communicate with WING.

UDP communications such as used for OSC do not have this limitation, being “connection-less”

At the time of this document, WING’s OSC remote protocol enables 1 (one) client subscribing to data (so

called “unsolicited” messages). Subscriptions have to be kept alive; they automatically die after 10

seconds.

©Patrick-Gilles Maillot 11 WING OSC – V 0.3.2

Access to WING Internal Data from remote programs
WING offers several remote protocols with the capability to access (read or write) parameters of its

internal structures and take full advantage of the numerous features of the digital desk, including remote

control. One of them is WING’s native (binary) interface and is covered in a separate document. This

document focuses on OSC.

WING hosts an OSC compliant remote protocol server that offers access to the full set of features of the

desk.

OSC Remote Protocol
WING includes an OSC Remote Protocol server. This enable easy access to remote features for many

professional, sound applications and extensions offered by third parties.

OSC remote control enables reading and modifying (if possible) all parameters included in the ae_data and

ce_data JSON structures; In order to allow this, ce_data parameters are included under the $ctl subtree in

the main parameter tree.

WING OSC server implementation complies with the OSC standard4 and proposes several ways to access

data, parameters and features. As all OSC compliant servers, the WING OSC server runs in the console and

will reply to UDP on a specific port: 2223.

When using standard UDP communication, connected clients will be replied onto their calling port. A

specific feature enables WING to reply to a UDP port specified by the connected client, as explained later

in this document.

OSC Data Types
In compliance with the OSC standard, WING supports the following types:

int32 (32bits, bi-endian),

float32 (32bits, IEEE 754, big endian),

string (non-null ASCII characters followed by a null, followed by 0-3 additional null characters to

make the total number of bits a multiple of 32),

blob (An int32 size count, followed by that many 8-bit bytes of arbitrary binary data, followed by

0-3 additional zero bytes to make the total number of bits a multiple of 32).

4 See http://opensoundcontrol.org/spec-1_0

©Patrick-Gilles Maillot 12 WING OSC – V 0.3.2

As specified in the OSC standard, the unit of transmission of OSC is an OSC Packet. Any application that

sends OSC Packets is an OSC Client; WING embeds and runs an OSC Server.

An OSC Packet consists of its contents, a contiguous block of binary data, and its size, the number of 8-bit

bytes that comprise the contents. The size of an OSC packet is always a multiple of 4.

In the case of WING, the contents of an OSC packet is always an OSC Message, i.e. OSC Bundles are not

supported. Note that wildcards (the use of ‘?’ and ‘*’ in Address Patterns) are not allowed.

An OSC Message consists of an OSC Address Pattern followed by an OSC Type Tag String followed by zero

or more OSC Arguments. Some older implementations of OSC may omit the OSC Type Tag string and WING

supports this.

OSC Address Patterns always start with the character ‘/’.

OSC Type Tags can be i, f, s, b for int32, float32, string and blob, respectively

OSC Arguments consist in a single or a contiguous sequence of the binary representations of each

argument

The maximum UDP packet size is 32k bytes.

WING OSC Messages
In the following paragraphs, we assume a communication link exists between WING and a client program,

and communication takes place with a WING console at a known IP address, using UDP on port 2223.

In the text shown below, the character ‘~’ will represent a NULL byte (\0). Patterns ->W and W-> represent

data sent to WING and data received from WING followed by the actual number of bytes transmitted or

received, respectively.

Retrieving WING console information can be completed by sending the OSC Address Pattern “/?”

->W, 4 B: /?~~
W->, 80 B: /?~~,s~~WING,192.168.1.71,PGM,ngc-full,NO_SERIAL,1.07.2-40-g1b1b292b:develop~~~~

The actual Byte exchanges are displayed below (OSC is a binary protocol)

->W, 4 B: 2f3f0000
W->, 80 B:

2f3f00002c73000057494e472c3139322e3136382e312e37312c50474d2c6e67632d66756c6c2c4e4f5f53455249414
c2c312e30372e322d34302d6731623162323932623a646576656c6f7000000000

The line below is using a more compliant OSC format, and will result in the same answer

->W, 8 B: /?~~,~~~

©Patrick-Gilles Maillot 13 WING OSC – V 0.3.2

Reading (Get) Parameter and Node data
There are two mains ways to gain access to WING data: using one-parameter-at-a-time or using “nodes”.

WING “nodes” are a great way to access multiple parameters at a time, and therefore maximize

communication bandwidth with the console. Nodes are represented as string OSC Data Type and are zero

terminated (\0 byte ending the string).

Nodes are also a good way to discover WING parameters, as they offer easy access to the full map of the

JSON internal data structures.

We show below WING’s first layer of JSON structure, and starting at the root, retrieved using OSC.

->W, 4 B: /~~~
W->, 116 B:
/~~~,ssssssssssssssss~~~$stat~~~cfg~$syscfg~io~~ch~~aux~bus~main~~~~mtx~dca~mgrp~~~~fx~~cards~~

~play~~~~rec~$ctl~~~~

Retrieving a WING single parameter is quite easy: You have to ensure your OSC request points to a leaf of

the JSON structure (i.e. there is no more hierarchy data after the current one). This is the case for the

fader value of a channel strip for example, or its mute state. Channel Strip 1 fader is represented as

follows:

Or “ch”/”1”/”fdr”, which translates to OSC Address Pattern /ch/1/fdr:

->W, 12 B: /ch/1/fdr~~~
W->, 32 B: /ch/1/fdr~~~,sff~~~~-oo~[0.0000][-144.0000]

In the example above, the data [0.0000][-144.0000] are ascii interpretations of two 32bits big-endian

float data values, each represented on 4 bytes as binary. The binary data actually received is as shown

below, and in order to ease the reading of numerical information in this document, we use readable

values in brackets rather than the actual binary data. The color highlights are there to help distinguish

data elements.

W->, 32 B: 2f63682f312f6664720000002c736666000000002d6f6f0000000000c3100000

©Patrick-Gilles Maillot 14 WING OSC – V 0.3.2

Depending on the OSC Address Pattern, WING returns ',s' for strings or enums, ',sff' (ascii, raw pos, float

value) for floats, ',sfi' (ascii, raw pos, int value) for ints. In the example above, fader position is a float and

WING returns the ascii representation, the raw [0.0..1.0] data and the actual float value in dB.

Similarly, requesting the mute state of channel strip 1 would return:

->W, 12 B: /ch/1/mute~~

W->, 32 B: /ch/1/mute~~,sfi~~~~1~~~[1.0000][1]
W->, 32 B: 2f63682f312f6d75746500002c73666900000000310000003f80000000000001

It should be noted that WING will accept both OSC path or hash data as representing nodes or

parameters; Indeed, all nodes and parameters in the console are assigned a binary address (a hash) as

explained in the chapter on native interface to the console. For example, the channel 1 mute command

above can be sent as OSC Address Patterns

/ch/1/mute~~, as shown or /#f50f69f8~~, and would return the same data as shown above. 0xf50f69f8 is

the hash for command “Channel 1 mute”. The full set of WING hash values can be discovered by

recursively traversing the JSON tree of WING nodes/commands, using the native binary interface or OSC

protocol, but it is generally more convenient to use the more standard OSC node notation, rather than

hexadecimal hash values to address the console features.

Receiving OSC data on a specific port
Some OSC programs will request that data is returned on a specific port rather than being sent back to the

port used by the requesting client for sending data. In order to enable this capability, WING OSC includes

an optional, special notation for all OSC commands:

Any OSC command can be prefixed with the /%<port>, with <port> in the form “12345” to enable receiving

the expected answer onto the specified port number. For example, the OSC request:

->W, 20 B: /%10027/ch/1/mute~~~

Will receive the expected reply from WING on port 10027, as shown below, using a sniffer program on

said port. The IP does not change.

©Patrick-Gilles Maillot 15 WING OSC – V 0.3.2

Writing (Set) Parameter and Node data

Single Parameters
OSC can also be used to set or modify WING data. Taking the fader and mute examples above, we can

modify their respective data using OSC commands, sending string, big-endian int32 or big-endian float32

with the corresponding OSC Type Tag following the OSC Address Pattern respective of the parameter to

change.

Individual parameters can be strings, integer or floats; WING OSC server implementation enables to use

several data types and will manage the conversion to ensure proper value setting inside the console. For

example, fader position is a floating-point internal value. It can be set as a string or a float using the

following OSC commands (in this example setting channel 2 fader position to -2 or -3dB):

->W, 20 B: /ch/2/fdr~~~,s~~-2~~
->W, 12 B: /ch/2/fdr~~~

W->, 36 B: /ch/2/fdr~~~,sff~~~~-2.0~~~~[0.7000][-2.0000]

->W, 20 B: /ch/2/fdr~~~,f~~[-3.0000]

->W, 12 B: /ch/2/fdr~~~
W->, 36 B: /ch/2/fdr~~~,sff~~~~-3.0~~~~[0.6750][-3.0000]

Node Data
WING nodes can also be used to set multiple values with using a single OSC “/” command, and offer a

simple yet effective way to navigate within the hierarchical structure of JSON data. Say you want/need to

set -fader and mute values to -1 dB, 0 dB, OFF and ON for channels 1 and 2; This can be achieved in a

single OSC request using the following syntax:

->W, 44 B: /~~~,s~~/ch.1.fdr=-1,mute=0,.2.fdr=0,mute=1~

Or setting channel 1 fader and mute values to 10 dB and ON, and setting bus 1 fader to 5 dB:

->W, 44 B: /~~~,s~~/ch.1.fdr=10,mute=1,/bus.1.fdr=5~~~~

As shown above, each parameter group is separated by a ‘,’ character, the ‘/’ character represents the

root of the JSON parameter tree, and ‘.’ characters are used to navigate up and down within the JSON

parameter tree.

The console will reply with /*~~,s~~OK~~ if the command was accepted, or one of the following:

/*~~,s~~NODE NOT FOUND~~

/*~~,s~~VALUE ERROR~~~~~
/*~~,s~~BUFFER OVERFLOW~

/*~~,s~~NODE IS NOT PAR~
/*~~,s~~INCOMPLETE DATA~

 if an error occurred during the execution of the command.

©Patrick-Gilles Maillot 16 WING OSC – V 0.3.2

->W, 12 B: /ch/1/fdr~~~

W->, 32 B: /ch/1/fdr~~~,sff~~~~-oo~[0.0000][-144.0000]
->W, 12 B: /ch/1/mute~~

W->, 32 B: /ch/1/mute~~,sfi~~~~1~~~[1.0000][1]

->W, 12 B: /ch/2/fdr~~~

W->, 32 B: /ch/2/fdr~~~,sff~~~~-oo~[0.0000][-144.0000]
->W, 12 B: /ch/2/mute~~

W->, 32 B: /ch/2/mute~~,sfi~~~~0~~~[0.0000][0]

->W, 44 B: /~~~,s~~/ch.1.fdr=-1,mute=0,.2.fdr=0,mute=1~

W->, 12 B: /*~~,s~~OK~~

->W, 12 B: /ch/1/fdr~~~

W->, 36 B: /ch/1/fdr~~~,sff~~~~-1.0~~~~[0.7250][-1.0000]
->W, 12 B: /ch/1/mute~~

W->, 32 B: /ch/1/mute~~,sfi~~~~0~~~[0.0000][0]

->W, 12 B: /ch/2/fdr~~~

W->, 32 B: /ch/2/fdr~~~,sff~~~~0.0~[0.7500][0.0000]
->W, 12 B: /ch/2/mute~~

W->, 32 B: /ch/2/mute~~,sfi~~~~1~~~[1.0000][1]

Nodes can also be located deeper in the JSON structure tree. For example, changing a single parameter in

the node channel 1 [”/ch/1”] can be done as shown below:

->W, 20 B: /ch/1~~~,s~~fdr=3~~~

W->, 16 B: /ch/1*~~,s~~OK~~

->W, 12 B: /ch/1/fdr~~~

W->, 32 B: /ch/1/fdr~~~,sff~~~~3.0~[0.8250][3.0000]

->W, 12 B: /ch/1/mute~~
W->, 32 B: /ch/1/mute~~,sfi~~~~0~~~[0.0000][0]

The OSC command is replied to with an OK status if execution went well; error messages can be returned

too, as explained earlier.

The same type of command can be used to set/change several parameters at once; For example, fader

and mute values of channel 1 can be done as follows:

->W, 28 B: /ch/1~~~,s~~fdr=4,mute=1~~~~
W->, 16 B: /ch/1*~~,s~~OK~~

->W, 12 B: /ch/1/fdr~~~
W->, 32 B: /ch/1/fdr~~~,sff~~~~4.0~[0.8500][4.0000]

->W, 12 B: /ch/1/mute~~

W->, 32 B: /ch/1/mute~~,sfi~~~~1~~~[1.0000][1]

©Patrick-Gilles Maillot 17 WING OSC – V 0.3.2

OSC: Special Cases

Dynamic JSON Structure changes
As parameters get changed on the WING console, its JSON structure tree evolves to reflect the change;

This can be a specific parameter that when changing to an ON state, offers new capabilities in the audio

chain, or in the way the console will react.

It is also typical of effects and plugins: WING consoles support the dynamic allocation of effect or plugins,

generating large changes within the default JSON tree. As already mentioned, WING nodes are a great

way to list the parameters available for a given effect and therefore be able to get and possibly set effect

parameter values.

The WING effects and plugins, and their respective parameters are listed later in this document5.

The OSC commands below show how you can access effects slots, allocate an effect and list parameters

and later modify effect parameter values.

Accessing effects with currently no effect loaded in effect slot 1, listing the effect Node:

->W, 4 B: /fx~

W->, 88 B:
/fx~,ssssssssssssssss~~~1~~~2~~~3~~~4~~~5~~~6~~~7~~~8~~~9~~~10~~11~~12~~13~~14~~15~~16~~

->W, 8 B: /fx/1~~~
W->, 60 B: /fx/1~~~,ssssss~mdl~fxmix~~~$esrc~~~$emode~~$a_chn~~$a_pos~~

->W, 12 B: /fx/1/mdl~~~

W->, 24 B: /fx/1/mdl~~~,s~~NONE~~~~

Loading a PIA effect in effect slot 1:

->W, 20 B: /fx/1/mdl~~~,s~~pia~
->W, 12 B: /fx/1/mdl~~~

W->, 20 B: /fx/1/mdl~~~,s~~PIA~

PIA effect is now loaded, listing the effect Node gives a different set of parameters:

->W, 8 B: /fx/1~~~

W->, 120 B:

/fx/1~~~,ssssssssssssssssss~mdl~fxmix~~~$esrc~~~$emode~~$a_chn~~$a_pos~~mix~g~~~31~~63~~125~250

~500~1k~~2k~~4k~~8k~~16k~

We can now get/set effect 1 PIA parameters, for example the 125Hz band:

->W, 12 B: /fx/1/125~~~

5 Please refer to the “Effects” paragraph

©Patrick-Gilles Maillot 18 WING OSC – V 0.3.2

W->, 32 B: /fx/1/125~~~,sff~~~~0.0~[0.5000][0.0000]

The 125Hz band is at 0dB, change it to 10dB and verify the change:

->W, 20 B: /fx/1/125~~~,f~~[10.000]
->W, 12 B: /fx/1/125~~~

W->, 36 B: /fx/1/125~~~,sff~~~~10.0~~~~[0.9233][10.000]

OSC Tag Type ‘blob’ use
WING OSC server implementation supports the ‘blob’ OSC Tag type, enabling the use of ‘native’

commands6 within OSC, making it is possible with the proper information at hand to send and receive

binary data.

An alternative to standard node requests (such as the request on root below) is to use blob.

->W, 4 B: /~~~

W->, 116 B:
/~~~,ssssssssssssssss~~~$stat~~~cfg~$syscfg~io~~ch~~aux~bus~main~~~~mtx~dca~mgrp~~~~fx~~cards~~

~play~~~~rec~$ctl~~~~

Blob types typically apply on WING nodes in order to retrieve the internal binary equivalent of the JSON

tree level respective of a WING node.

Shown below is a request at root level using the native commands part of the blob data [all bytes sent

shown as hex data]

/ ,b ddde

Data actually sent (in hex): ->W, 16 B: 2f0000002c62000000000002ddde0000

WING’s reply is:

W->, 376 B: /~~~,b~~361 bytes:

df001497a0043900000524737461740553544154450000df000dedca7af9000003636667000000df0011f89818a6000

00724737973636667000000df000f294f7794000002696f03492f4f0000df001370b101390000026368074348414e4e
454c0000df00188fa3078d0000036175780b415558204348414e4e454c0000df0010f46c185e0000036275730342555

30000df001204d3a3a80000046d61696e044d41494e0000df0013f82a5af20000036d7478064d41545249580000df00
10e313aeff000003646361034443410000df0018d252398b0000046d6772700a4d5554452047524f55500000df00134

73c9134000002667807454646454354530000df001eb4296fc900000563617264730f455850414e53494f4e20434152

6 Detailed information on native commands is provided in a separate document

©Patrick-Gilles Maillot 19 WING OSC – V 0.3.2

44530000df001457297a28000004706c617906504c415945520000df0015fab1762c000003726563085245434f52444

5520000df0015cbb951430000042463746c07434f4e54524f4c0000de~~~

Lots of information are returned either as string, or more often as blob. In the reply above, after each ‘df’

byte is a data length on two bytes, immediately followed by the binary address (the hash) where a node,

parameter, or subtree data can be found. For example the subtree entry for channel (/ch) can be found at

address/hash 70b10139

An example on retrieving the DAW node (hash is df17c242, part of the $ctl subtree) is shown below.

Sending the OSC blob :

/$ctl/daw ,b ddde, or

/ ,b d7df17c242ddde

Respectively translate in the following binary data being sent to the console:

->W, 24 B: 2f2463746c2f6461770000002c62000000000002ddde0000 or

->W, 20 B: 2f0000002c62000000000007d7df17c242ddde00

To which the console replies with (it can also reply with one of the errors listed earlier in the OSC

chapters):

W->, 764 B: /$ctl/daw~~~,b~~744 bytes:
df001e3cb129d50000026f6e0a44415720454e41424c4500400000000000000001df00244e5c7f34000004636f6e6e0

a434f4e4e454354494f4e005000020344494e000355534200df0023e5681680000004656d756c09454d554c4154494f
4e00500002034d4355000348554900df006d42701ca9000006636f6e666967000050000402434314435553544f4d204

34f4e54524f4c53204f4e4c59044d5354520a53494e474c45204d4355084d535452314558540e4d4355202b20455854
454e444552084d53545232455854114d4355202b20327820455854454e444552df002aae1538a400000463637570145

5534520555050455220434320464f522044415700400000000000000001df0093892e512d000006707265736574124c
415354204c4f414445442050524553455400500008012d012d0663756261736506435542415345046c697665044c495

645066c6f67696378074c4f4749432058066e75656e646f064e55454e444f0870726f746f6f6c730950524f20544f4f
4c5306726561706572065245415045520973747564696f6f6e650a53545544494f204f4e45df001bbeefaeab0000032

46f6e06444157204f4e00400000000000000001df00239631559f0000062462706167650b425554544f4e2050414745

00400000000000000004df002d012dc5460000092462746e746f7563681242544e53454c20464144455220544f55434

800400000000000000001df0026775c19c20000082462746e76706f740c42544e53454c20562d504f54004000000000
00000001df002942aeb92800000a2462746e7265637264790d42544e53454c205245435244590040000000000000000

1df0025fccfbe070000082462746e6175746f0b42544e53454c204155544f00400000000000000001df002685cdce3f
0000082462746e7673656c0c42544e53454c20562d53454c00400000000000000001df002915abd96800000a2462746

e696e736572740d42544e53454c20494e5345525400400000000000000001de

The above is more difficult to read than the more standard way of retrieving the node, but contains more

information:

->W, 12 B: /$ctl/daw~~~

W->, 156 B:
/$ctl/daw~~~,ssssssssssssss~on~~conn~~~~emul~~~~config~~ccup~~~~preset~~$on~$bpage~~$btntouch~~

~$btnvpot~~~~$btnrecrdy~~$btnauto~~~~$btnvsel~~~~$btninsert~~

Matching the two representations tell us that:

©Patrick-Gilles Maillot 20 WING OSC – V 0.3.2

daw/on is at binary address 3cb129d5,

daw/conn at 4e5c7f34,

daw/emul at e5681680,

daw/config at 42701ca9,

daw/ccup at ae1538a4,

daw/preset at 892e512d,

daw/$on at beefaeab,

and so on (highlighted values above).

We can also use the blob Type Tag to execute native/binary commands. Using for example the daw/$on

hash/binary address value of beefaeab, we can set the console in and out of DAW mode, as if one would

have pressed the DAW button.

For example, sending any of the following commands will set DAW mode ON:

->W, 24 B: /~~~,b~~12 bytes: d7beefaeabd400000001ddde

->W, 28 B: /$ctl/daw/$on~~~,b~~3 bytes: 01ddde~

In the binary data sent with the line above, the segment d400000001 is equivalent to asking the value of

the parameter to be set using a 32bit integer with value 1.

The following lines are requesting to turn OFF DAW mode:

->W, 24 B: /~~~,b~~12 bytes: d7beefaeabd400000000ddde

->W, 28 B: /$ctl/daw/$on~~~,b~~3 bytes: 00ddde~

In both blob Type Tag commands above, the console replies with a blob. Depending on the cases, it can

also return strings.

The Tag Type blob can also be used to retrieve the status/value of WING parameters when using the

native command ‘data request’; In an example below, still using the DAW ON state, we can get the data

using the following command:

/$ctl/daw/$on ,b dc

->W, 28 B: 2f2463746c2f6461772f246f6e0000002c62000000000001dc000000

WING returns the following which includes the hash value for /$ctl/daw/$on and the current value (WING

native coding) for the parameter: 00

/$ctl/daw/$on~~~,b~~7 bytes: d7beefaeab00de ~

W->, 32 B: 2f2463746c2f6461772f246f6e0000002c62000000000007d7beefaeab00de00

©Patrick-Gilles Maillot 21 WING OSC – V 0.3.2

Detailed information on the native / binary interface to WING and data value coding is provided in a

separate document.

Subscribing to OSC Data
There are two main types of subscription: binary or OSC messages.

At the time of this document, subscriptions are valid for all OSC WING messages only, and a maximum of 1

subscription can be active at any time, provided to the last requestor.

Subscriptions must be renewed every 10 seconds in order to keep alive.

/*b~ will enable receiving unsolicited binary messages

Binary messages are formatted exactly as the binary/native interface and therefore can be sent back to

the console with no change.

/*s~ will request OSC messages

OSC messages are received as triplets of data, as presented above7; Sending back data to WING will

require to select one of the (up to) 3 parameters received, depending on the chosen format. The ‘string’

argument will always work for all messages).

Using the simple forms of subscription requests will provide data from the console to the requesting

IP/port. It is possible to redirect the data received from WING by prefixing the commands with a port

specifier element such as shown below:

/%23456/*b~~ will subscribe to binary messages, being sent by WING to port 23456.

7 Refer to “Writing (Set) Parameter and Node data”, paragraph “Single Parameters”

©Patrick-Gilles Maillot 22 WING OSC – V 0.3.2

Effects and Plugins
WING comes with an impressive number of effects, plugins and emulations that can be used on any

channel without costing any FX slots. In every channel, Gate, EQ Compressor can take different processing

models you can organize and change on the fly. The following pages below present the different effects

and their parameters.

Plugins
Plugins entries are directly included with channels, busses, etc. and can either default to WING standard

algorithms or adapt to alternative plugins to color your sound or fit your taste when it comes to mixing.

Plugins are showing under the main JSON structure, only when instantiated. WING Channel audio engines

enable 4 sorts of plugins: Filter, Gate, EQ and Dynamics. Bus, Main and Matrix audio engines support EQ

and Dynamics plugins.

The choice of plugin is represented by the name (or model) of the plugin, as set under the respective

“mdl” token; After a console reset, the default channel Filter, Gate, EQ and Dynamics plugins will be

“TILT”, “GATE”, “STD”, and “COMP”, respectively, and these can be changed to one of the multiple plugins

available within the console (respecting the category they apply to of course).

The choice of plugin is represented by the name (or model) of the plugin, as set under the respective

“mdl” token; authorized values are:

Filters:

TILT EQ, MAXER, AP 90, AP 180

Gates:

GATE/EXPANDER, DUCKER, EVEN 88 GATE, SOUL 9000 GATE, DRAW MORE 241, BDX902 DEESSER,

WAVE DESIGNER, DYNAMIC EQ, SOUL WARMTH PRE, 76 LIMITER AMP, LA LEVELER, AUTO RIDER

Equalizers:

WING EQ, SOUL ANALOGUE, EVEN 88 FORMANT, EVEN 84, FORTISSIMO 110, PULSAR, MACH EQ4

©Patrick-Gilles Maillot 23 WING OSC – V 0.3.2

Compressors:

WING COMPRESSOR, WING EXPANDER, BDX 160 COMP, BDX 560 EASY, DRAW MORE COMP, EVEN

COMP/LIM, SOUL 9000, SOUL BUS COMP, RED3 COMPRESSOR, 76 LIMITER AMP, LA LEVELER, FAIR

KID, ETERNAL BLISS, NO-STRESSOR, WAVE DESIGNER, AUTO RIDER

Effects
Effects nodes are part of the main JSON structure, under the fx.n names, with n: [1…16] representing the

16 effects slots available for simultaneous use in the WIN audio processing. These 16 slots are divided in

two sets of slots: 1-8 and slots 9-16 dedicated to premium effects and standard effects, respectively. As

one can expect, premium effect slots can be running standard effects too.

As in the case of plugins, the choice of effect is represented by the name (or model) of the effect, as set

under the respective “mdl” token; authorized values are:

Premium

NONE, EXTERNAL, HALL REVERB, ROOM REVERB, CHAMBER REVERB, PLATE REVERB, CONCERT REVERB,
AMBIENCE, VINTAGE ROOM, VINTAGE REVERB, VINTAGE PLATE, GATED REVERB, REVERSE REVERB,

ELAY/REVERB, SHIMMER REVERB, SPRING REVERB, DIMENSION CRS, STEREO CHORUS, STEREO
FLANGER, STEREO DELAY, ULTRATAP DELAY, TAPE DELAY, OILCAN DELAYB, BD DELAY, STEREO

PITCH, DUAL PITCH, VSS3 REVERB,

Standard

NONE, EXTERNAL, GRAPHIC EQ, PIA 560 GEQ, C5-COMBINATOR, DOUBLE VOCAL, PRECISION
LIMITER, 2-BAND DEESSER, ULTRA ENHANCER, EXCITER, PSYCHO BASS, ROTARY SPEAKER, PHASER,

TREMOLO/PANNER, TAPE MACHINE, MOOD FILTER, BODYREZ, SUB OCTAVER, PICH FIX, RACK AMP, UK
ROCK AMP, ANGEL AMP, JAZZ CLEAN AMP, DELUXE AMP, SOUL ANALOGUE, EVEN 88 FORMANT, EVEN

84, FORTISSIMO 110, PULSAR, MACH EQ4

Effects can be used as dedicated inserts at two defined location within the audio path: pre and post xxx.

If an effect is part of a channel insert, assigning the effect to a different channel will remove the effect

from its previous channel assignment. In order to create a more traditional effect bus, WING requires to

dedicate one of the channels to the operation; Channels that want to use the effect bus can the send their

audio (or a part of it) to the channel that carries the effect, creating an effect mix bus that will apply the

same effect to several sources mixed into the effect channel and provide the resulting effect as a

traditional effect return that can be routed to a bus.

©Patrick-Gilles Maillot 24 WING OSC – V 0.3.2

As for the case of plugins, Effect types/engines are represented by their respective model name under the

“mdl” tag, enabling the selection (loading) of a specific in one of the 16 available effect slots.

The JSON tree dedicated to effects has the following structure:

“fx”: {
 “1”: {
 “mdl”: “NONE”,
 “fxmix”: 100
 }

“2”…“16”: {}
}

In fact, there are a few more, read-only8 elements in the actual WING structure of a non-affected effect

slot, resulting in the following JSON structure:

“fx”: {
 “1”: {
 “mdl”: “NONE”,
 “fxmix”: 100,
 “$esrc”: 0, external source: [0…400]
 “$emode”: M, external mode: Mono, Stereo, Mid/Side
 “$a_chn”: 0, assign channel: [0…76]
 “$a_pos”: 0 assign position: 0, 1]
 }

“2”…“16”: {}
}

Once an effect is assigned to a slot, the JSON structure for the respective slot is extended to include the

parameters for the assigned effect. For example, installing reverb effect “ROOM” in effect slot 5 will result in

the following update to the JSON of effect 5:

“fx”: {
…

 “5”: {
 “mdl”: “ROOM”,
 “fxmix”: 100
 “$esrc”: 0, [0…400]
 “$emode”: M, [M, ST, M/S]
 “$a_chn”: 0, [0, 1]
 “$a_pos”: 0, [0, 1]
 “pdel”: pre-delay
 “size”: room size
 “dcy”: decay
 “mult”: bass multiplier
 “damp”: damping
 “lc”: low cut
 “hc”: high cut
 “shp”: shape
 “sprd”: spread
 “diff”: diffusion
 “spin”: spin
 “ecl”: echo left
 “ecr”: echo right
 “efl”: feed left

8 Read-only JSON elements start with a ‘$’ character

©Patrick-Gilles Maillot 25 WING OSC – V 0.3.2

 “efr”: feed right
 }

…
}

Each available effect is a sort of program including a set of dedicated parameters. When choosing a

specific effect, the effect program is instantiated in one of the available slots and its parameters are

mapped to the main Jason parameters lists for that particular effect slot, thus enabling for example up to

16 different copies9 of the same effect to be active on every effect slots, with differentiated parameters

for each slot.

The tables below will list the effect names and parameters, and the parameter types associated with each

known effect.

9 For standard effects, 8 for premium effects

©Patrick-Gilles Maillot 26 WING OSC – V 0.3.2

Effects and Plugins’ Parameters list
In the (long) tables below, we list all known/exposed effects and plugins available with the WING digital

console, along with their name, type, and min/max/step/list values; We therefore present Standard

Effects, Premium effects, Filter Plugins, Gate Plugins, EQ Plugins, and Compressor Plugins.

Standard effects

 None

 0 “mdl”: NONE

External

 0 “mdl”: EXT
 1 “egrp”: str [OFF, LCL, AUX, A, B, C, SC,
 USB, CRD, MOD, PLAY, AES] ext grp

 2 “ein”: int [1…64] ext in
 3 “emode”: str [M, ST, M/S] ext mode

 4 “lat”: int [0…200] latency
 5 “trim”: linf [-18, 18, 361] dB, trim

Graphic EQ

 0 “mdl”: GEQ

 1 “type”: str [STD, TRU] geq type
 2 “20”: linf [-15, 15, 121] dB

 3 “25”: linf [-15, 15, 121] dB
 4 “31”: linf [-15, 15, 121] dB

 5 “40”: linf [-15, 15, 121] dB
 6 “50”: linf [-15, 15, 121] dB

 7 “63”: linf [-15, 15, 121] dB

 8 “80”: linf [-15, 15, 121] dB

 9 “100”: linf [-15, 15, 121] dB

10 “125”: linf [-15, 15, 121] dB
11 “160”: linf [-15, 15, 121] dB

12 “200”: linf [-15, 15, 121] dB
13 “250”: linf [-15, 15, 121] dB

14 “315”: linf [-15, 15, 121] dB

15 “400”: linf [-15, 15, 121] dB

16 “500”: linf [-15, 15, 121] dB

17 “630”: linf [-15, 15, 121] dB
18 “800”: linf [-15, 15, 121] dB

19 “1k”: linf [-15, 15, 121] dB
20 “1k25”: linf [-15, 15, 121] dB

21 “1k6”: linf [-15, 15, 121] dB
22 “2k”: linf [-15, 15, 121] dB

23 “2k5”: linf [-15, 15, 121] dB
24 “3k15”: linf [-15, 15, 121] dB

25 “4k”: linf [-15, 15, 121] dB

26 “5k”: linf [-15, 15, 121] dB
27 “6k3”: linf [-15, 15, 121] dB

©Patrick-Gilles Maillot 27 WING OSC – V 0.3.2

28 “8k”: linf [-15, 15, 121] dB

29 “10k”: linf [-15, 15, 121] dB
30 “12k5”: linf [-15, 15, 121] dB

31 “16k”: linf [-15, 15, 121] dB

32 “20k”: linf [-15, 15, 121] dB

PIA 560 GEQ

 0 “mdl”: PIA

 1 “mix”: linf [0, 125, 126] %, mix
 2 “gain”: linf [-12, 12, 241] dB

 3 “31”: linf [-12, 12, 241] dB
 4 “63”: linf [-12, 12, 241] dB

 5 “125”: linf [-12, 12, 241] dB
 6 “250”: linf [-12, 12, 241] dB

 7 “500”: linf [-12, 12, 241] dB
 8 “1k”: linf [-12, 12, 241] dB
 9 “2k”: linf [-12, 12, 241] dB

10 “4k”: linf [-12, 12, 241] dB

11 “8k”: linf [-12, 12, 241] dB

12 “16k”: linf [-12, 12, 241] dB

Combinator

 0 “mdl”: C5-CMB

 1 “thr”: linf [-40, 0, 401] dB, threshold
 2 “gain”: linf [-10, 10, 201] dB, gain
 3 “ratio”: str [1.1, 1.2, 1.3, 1.5, 1.7,

 2.0, 2.5, 3.0, 3.5, 4.0,
 5.0, 7.0, 10.0, 100.0] ms, ratio

 4 “slope”: str [24, 48] dB/Oct, slope
 5 “bandse l”: int [1..5] selected band

 6 “att”: linf [0, 20, 21] attack
 7 “rel”: logf[20, 3000, 201] ms, release
 8 “arel”: int [0, 1] auto release

 9 “sbc”: linf [1, 10, 10] sbc speed
10 “sbcon”: int [0,1] sbc on

11 “thr_1”: linf [-10, 10, 201] dB, 1-THR
12 “thr_2”: linf [-10, 10, 201] dB, 2-THR

13 “thr_3”: linf [-10, 10, 201] dB, 3-THR

14 “thr_4”: linf [-10, 10, 201] dB, 4-THR
15 “thr_5”: linf [-10, 10, 201] dB, 5-THR

16 “gain_1”: linf [-10, 10, 201] dB, 1-GAIN
17 “gain_2”: linf [-10, 10, 201] dB, 2-GAIN

18 “gain_3”: linf [-10, 10, 201] dB, 3-GAIN
19 “gain_4”: linf [-10, 10, 201] dB, 4-GAIN

20 “gain_5”: linf [-10, 10, 201] dB, 5-GAIN
21 “byp_1”: int[0, 1], 1-BYP

22 “byp_2”: int[0, 1], 2-BYP
23 “byp_3”: int[0, 1], 3-BYP
24 “byp_4”: int[0, 1], 4-BYP

25 “byp_5”: int[0, 1], 5-BYP
26 “width_1”: linf[-50, 50, 101], 1-XOVER

27 “width_2”: linf[-50, 50, 101], 2-XOVER
28 “width_3”: linf[-50, 50, 101], 3-XOVER

29 “width_4”: linf[-50, 50, 101], 4-XOVER

30 “width_5”: linf[-50, 50, 101], 5-XOVER
31 “mix”: linf[0, 100, 101], mix

32 “$bdsolo”: int [0, 1] band solo

©Patrick-Gilles Maillot 28 WING OSC – V 0.3.2

Precision Limiter

 0 “mdl”: LIMITER

 1 “gin”: linf [0, 18, 73] dB, in gain
 2 “gout”: linf [-18, 0, 73] dB out gain

 3 “sqz”: int [0…100] sqeeze
 4 “knee”: int [0…10] knee
 5 “again”:int [0, 1] auto gain

 6 “att”: linf [.05, 1, 95] ms, attack
 7 “rel”: logf [20, 2000, 101] ms, release

2-Band DeEsser

 0 “mdl”: DE-S2
 1 “lo”: linf [0, 50, 51] low

 2 “hi”: linf [0, 50, 51] high

 3 “los”: linf [0, 50, 51] low (s)
 4 “his”: linf [0, 50, 51] high (s)

 5 “gdr”: str [FEMALE, MALE] gender
 6 “mode”: str [STEREO, MID/SIDE] mode

Ultra Enhancer

 0 “mdl”: ENHANCE
 1 “stlv”: linf [-100, 100, 201] %, st lvl

 2 “lmf”: linf [-100, 100, 201] %, lmf spread
 3 “lmvl”: linf [-100, 100, 201] %, mono lvl
 4 “st”: linf [-100, 100, 201] %, st pan

 5 “m”: linf [-100, 100, 201] %, mono pan
 6 “bass”: linf [0, 100, 101] %, bass gain

 7 “mid”: linf [0, 100, 101] %, mid gain
 8 “high”: linf [0, 100, 101] %, high gain

 9 “g”: linf [-112, 12, 241] dB, gain
10 “solo”: int [0, 1] solo
11 “bassf”: linf [1, 50, 50] bass freq

12 “midq”: linf [1, 50, 50] mid Q
13 “highf”: linf [1, 50, 50] high freq

Exciter

 0 “mdl”: EXCITER
 1 “tune”: logf [1000, 10000, 51] Hz, tune

 2 “peak”: linf [0, 100, 101] %, peak
 3 “zfill”: linf [0, 100, 101] %, zfill
 4 “timbre”:linf [-50, 50, 101] timbre

 5 “harm”: linf [0, 100, 101] %, harm
 6 “mix”: linf [0, 100, 101] %, mix

 7 “solo”: int [0, 1] solo

©Patrick-Gilles Maillot 29 WING OSC – V 0.3.2

Psycho Bass

 0 “mdl”: P-BASS

 1 “int”: linf [-24, 6, 61] dB, intensity

 2 “bass”: linf [-60, 0, 121] dB, bass gain

 3 “xf”: logf [32, 200. 51] Hz, X/O freq
 4 “solo”: int [0, 1] solo

Rotary Speaker

 0 “mdl”: ROTARY
 1 “sw”: str [STOP, SLOW, FAST]
 2 “lo”: logf [.1, 3.999, 51] Hz, lo speed

 3 “hi”: logf [4, 10, 51] Hz, hi speed
 4 “bal”: linf [-100, 100, 201] balance

 5 “mix”: linf [0, 100, 101] %, mix
 6 “dist”: linf [0, 100, 101] distance

 7 “dac”: linf [0, 100, 101] %, drum accel

 8 “hac”: linf [0, 100, 101] %, horn accel

Phaser

 0 “mdl”: PHASER

 1 “spd”: logf [.05, 5, 201] Hz, speed

 2 “phase”: int [0…180] phase

 3 “wave”: int [-50…50] wave
 4 “range”: int [2…98] %, range

 5 “depth”: int [0…100] %, depth
 6 “emod”: int [-100, 100] % env mod
 7 “att”: logf [10, 1000, 201] ms, attack

 8 “hld”: logf [10, 2000, 201] ms, hold
 9 “rel”: logf [10, 1000, 201] ms, release

10 “mix”: int [0…100] %, mix
11 “stg”: int [2…12] stages

12 “reso”: int [0…80] %, reso

Tremolo Panner

 0 “mdl”: PANNER
 1 “att”: logf [10, 1000, 201] ms, attack

 2 “hld”: logf [10, 2000, 201] ms, hold
 3 “rel”: logf [10, 1000, 201] ms, release

 4 “espd”: int [0…100] %, env>depth
 5 “edep”: int [0…100] %, env>depth

 6 “spd”: logf [.05, 5, 201] Hz, speed
 7 “phase”: int [0…180] phase

 8 “wave”: int [-50…50] wave

 9 “depth”: int [0…100] %, depth

©Patrick-Gilles Maillot 30 WING OSC – V 0.3.2

Tape Machine

 0 “mdl”: TAPE

 1 “drv”: linf [-12, 12, 97] dB, drive

 2 “spd”: logf [7.5, 30, 65]

 3 “low”: int [0, 1] low bump
 4 “hi”: int [0, 1] high shelv

 5 “out”: linf [-12, 12, 97] dB, out gains s

Mood Filter

 0 “mdl”: MOOD
 1 “fbase”: logf [20, 15000, 101] Hz, base

 2 “filt”: str [LP, HP, BP, NOTCH] type
 3 “slope”: str [12, 24] slope

 4 “reso”: linf [0, 10, 101] reso
 5 “drv”: linf [0, 10, 101] drive

 6 “env”: linf [-100, 100, 201] %, env

 7 “att”: logf [10, 250, 101] ms, attack

 8 “hld”: logf [1,500, 101] ms, hold

 0 “rel”: logf [1,500, 101] ms, release
 1 “mix”: linf [0, 10, 101] %, mix

 2 “lfo”: linf [linf [0, 10, 101] %, lfo
 6 “spd”: logf [.05, 20, 301] Hz, speed

 7 “phase”: int [0…180] phase
 8 “wave”: str [TRI, SIN, SAW+, SAW-,

 RMP, SQU, RND] lfo wave

Bodyrez

 0 “mdl”: BODY
 1 “body”: linf [0,100,101] body

Sub Octaver

 0 “mdl”: SUB
 1 “rng”: str [LOW, MID, HIGH] range

 2 “oct1”: linf [0,100, 101] %, octave 1
 3 “oct2”: linf [0,100, 101] %, octave 2

Double Vocal

 0 “mdl”: DOUBLE
 1 “mode”: str [TIGHT, LOOSE, GROUP,
 DETUNE, THICK] mode

 2 “mix”: linf [0,100, 101] %, mix
 3 “sprd”: linf [0,100, 101] %, spread

©Patrick-Gilles Maillot 31 WING OSC – V 0.3.2

Pitch Fix

 0 “mdl”: PCORR

 1 “spd”: linf [1, 100, 100] speed
 2 “amnt”: linf [0, 50, 51] amount

 3 “a4”: linf [410, 470, 601] A4 pitch
 4 “_c”: int [0, 1]

 5 “_db”: int [0, 1]

 6 “_d”: int [0, 1]
 7 “_eb:” int [0, 1]

 8 “_e: int [0, 1]
 9 “_f:” int [0, 1]

10 “_gb:” int [0, 1]
11 “_g:” int [0, 1]

12 “_ab:” int [0, 1]

13 “_a:” int [0, 1]

14 “_bb:” int [0, 1]

15 “_b:” int [0, 1]

Rack Amp

 0 “mdl”: RACKAMP

 1 “pre”: linf [0, 10, 101] preamp
 2 “buzz”: linf [0, 10, 101] buzz
 3 “punch”: linf [0, 10, 101] punch

 4 “crunch”:linf [0, 10, 101] crunch
 5 “drive linf [0, 10, 101] drive

 6 “out”: linf [0, 10, 101] out gain
 7 “leq”: linf [0, 10, 101] low eq

 8 “heq” linf [0, 10, 101] high eq
 9 “cab”: int [0, 1] cab sim

UK Rock Amp

 0 “mdl”: UKROCK

 1 “gain”: linf [0, 10, 101] gains
 2 “bass”: linf [0, 10, 101] bass

 3 “mid”: linf [0, 10, 101] middle
 4 “treb”: linf [0, 10, 101] trebble

 5 “pres linf [0, 10, 101] presence
 6 “mstr”: linf [0, 10, 101] master

 7 “out”: linf [0, 10, 101] out gain

 8 “sag” linf [0, 10, 101] sag

 9 “cab”: int [0, 1] cab sim

©Patrick-Gilles Maillot 32 WING OSC – V 0.3.2

Angel Amp

 0 “mdl”: ANGEL

 1 “gain”: linf [0, 10, 101] gains

 2 “bass”: linf [0, 10, 101] bass

 3 “mid”: linf [0, 10, 101] middle
 4 “treb”: linf [0, 10, 101] trebble

 5 “pres linf [0, 10, 101] presence
 6 “mstr”: linf [0, 10, 101] master
 7 “out”: linf [0, 10, 101] out gain

 8 “sag” linf [0, 10, 101] sag
 9 “cab”: int [0, 1] cab sim

10 “midb”: int [0, 1] mid boost
11 “bri”: int [0, 1] bright

12 “bt”: int [0, 1] bottom

Jazz Clean Amp

 0 “mdl”: JAZZC
 1 “vol”: linf [0, 10, 101] volume

 2 “bass”: linf [0, 10, 101] bass
 3 “mid”: linf [0, 10, 101] middle

 4 “treb”: linf [0, 10, 101] trebble
 5 “out”: linf [0, 10, 101] out gain

 6 “bri”: int [0, 1] bright

 7 “cab”: int [0, 1] cab sim

Deluxe Amp

 0 “mdl”: DELUXE

 1 “vol”: linf [1, 10, 91] volume
 2 “bass”: linf [1, 10, 91] bass

 4 “treb”: linf [1, 10, 91] trebble
 5 “out”: linf [1, 10, 91] out gain

 6 “sag”: linf [1, 10, 91] sag
 7 “cab”: int [0, 1] cab sim

Soul Analogue

 0 “mdl”: SOUL

 1 “mix”: linf [0, 125, 126] %, mix
 2 “lf”: linf [0, 10, 101] lo freq

 3 “lg”: linf [-5, 5, 101] lo gain

 4 “lmf”: linf [0, 10, 101] lm freq
 5 “lmf3”: int [0, 1] lm /3

 6 “lmq”: linf [0, 10, 101] lm q
 7 “lmg”: linf [-5, 5, 101] lm gain

 8 “hmf”: linf [0, 10, 101] hm freq
 9 “hmf3”: int [0, 1] hm x3

10 “hmq”: linf [0, 10, 101] hm q
11 “hmg”: linf [-5, 5, 101] hm gain

12 “hf”: linf [0, 10, 101] hf freq
13 “hg”: linf [-5, 5, 101] hf gain

©Patrick-Gilles Maillot 33 WING OSC – V 0.3.2

Even 88 Formant

 0 “mdl”: E88

 1 “mix”: linf [0, 125, 126] %, mix

 2 “lf”: linf [0, 10, 101] lf freq

 3 “lg”: linf [-5, 5, 101] lf gain
 4 “lq”: str [LOW, HIGH] lf q

 5 “lt”: str [BELL, SHELV] lf type
 6 “lmf”: linf [0, 10, 101] lm freq
 7 “lmg”: linf [-5, 5, 101] lm gain

 8 “lmq”: linf [0, 10, 101] lm q
 9 “hmf”: linf [0, 10, 101] hm freq

10 “hmg”: linf [-5, 5, 101] hm gain
11 “hmq”: linf [0, 10, 101] hm q

12 “hf”: linf [0, 10, 101] hm freq
13 “hg”: linf [-5, 5, 101] hf gain
14 “hq”: str [LOW, HIG] hf q

15 “ht”: str [BELL, SHELV] hf type

Even 84

 0 “mdl”: E84

 1 “mix”: linf [0, 125, 126] %, mix
 2 “g”: linf [-20, 20, 81] dB, gain

 3 “lf”: str [OFF, 35, 60, 110, 220] lf freq

 4 “lg”: linf [-5, 5, 101] lf gain
 5 “mf”: str [OFF, 350, 700, 1k6, 3k2,

 4k8, 7k2] mid freq
 6 “mg”: linf [-5, 5, 101] mid gain

 7 “mq”: str [LOW, HIGH] mid q
 8 “hf”: str [10k, 12k, 16k, OFF] hf freq

 9 “hg”: linf [-5, 5, 101] hf gain

Fortissimo110

 0 “mdl”: F110
 1 “mix”: linf [0, 125, 126] %, mix

 2 “peq”: int [0, 1] peq on
 3 “lmf”: linf [0, 10, 101] lm freq

 4 “lmg”: linf [-5, 5, 101] lm gain

 4 “lmq”: linf [0, 10, 101] lm q

 5 “lmf3”: int [0, 1] lm /3
 6 “hmf”: linf [0, 10, 101] hm freq
 7 “hmg”: linf [-5, 5, 101] hm gain

 8 “hmq”: linf [0, 10, 101] hm q
 9 “hmf3”: int [0, 1] hm x3

10 “shv”: inf [0, 1] shv on
11 “lf”: str [33, 56, 95, 160,

 270, 460] lf freq
11 “lg”: linf [-5, 5, 101] lf gain
13 “hf”: str [3k3, 4k7,6k8, 10k,

 15k, 18k] hf freq
14 “hg”: linf [-5, 5, 101] hf q

15 “g”: linf [-18, 18, 73] gain

©Patrick-Gilles Maillot 34 WING OSC – V 0.3.2

Pulsar

 0 “mdl”: PULSAR

 1 “mix”: linf [0, 125, 126] %, mix

 2 “eq1”: int [0, 1] eq1 on

 3 “1lb”: linf [0, 10, 101] lf boost
 4 “1latt”: linf [0, 10, 101] lf att

 4 “1lf”: str [20, 30,60, 100] Hz, lf freq
 5 “1hw”: linf [0, 10, 101] hf wid
 6 “1hb”: linf [0, 10, 101] hf boost

 7 “1hf”: str [3k, 4k, 5k, 8k, 10k,
 12k, 16k] Hz, hf freq

 8 “1hatt”: linf [0, 10, 101] hf att
 9 “1hattf”:str [5k, 10k, 20k] hf att

10 “eq5”: inf [0, 1] eq5 on
11 “5lb”: linf [0, 10, 101] lm boost
12 “5lf”: str [200, 300, 500, 700,

 1k] Hz, lf freq
13 “5md”: linf [0, 10, 101] mid dip

14 “5mf”: str [200, 300, 500, 700, 1k, 1k5,

 2k, 3k, 4k, 5k,7k] Hz, mid freq

15 “5hb”: linf [0, 10, 101] HM boost
16 “5hf”: str [1k5, 2k, 3k, 4k,
 5k] Hz, hf freq

Mach EQ4

 0 “mdl”: MACH4
 1 “mix”: linf [0, 125, 126] %, mix

 2 “sub”: linf [-5, 5, 101] sub
 3 “40”: linf [-5, 5, 101] 40

 4 “160”: linf [-5, 5, 101] 160
 5 “650”: linf [-5, 5, 101] 650
 6 “2k5”: linf [-5, 5, 101] 2k5

 7 “air”: linf [0, 10, 101] air
 8 “airm”: str [OFF, 2k5, 5k, 10k,

 20k, 40k] air mode
 9 “again”: int [0, 1] auto

©Patrick-Gilles Maillot 35 WING OSC – V 0.3.2

Premium effects

Hall Reverb

 0 “mdl”: HALL

 1 “pdel”: int [0…200] ms, pre-delay
 2 “size”: int [0…100] hall size

 3 “dcy”: logf [.2, 5, 101] s, decay
 4 “mult”: logf [.5, , 101] bass multiplier

 5 “damp”: logf [1k, 20k, 51] Hz, damping

 6 “lc”: logf [20, 400, 51] Hz, low cut
 7 “hc”: logf [200, 20k, 51] Hz, high cut

 8 “shp”: linf [0, 50, 51] shape
 9 “sprd”: int [0…50] spread

10 “diff”: int [1…30] diffusion
11 “mspd”: int [0…100] mod speed

Room Reverb

 0 “mdl”: ROOM
 1 “pdel”: int [0…200] ms, pre-delay
 2 “size”: linf [4, 76, 145] m, room size

 3 “dcy”: logf [.3, 25, 101] s, decay
 4 “mult”: logf [.25, 4, 101] bass multiplier

 5 “damp”: logf [1k, 20k, 51] Hz, damping
 6 “lc”: logf [20, 400, 51] Hz, low cut

 7 “hc”: logf [200, 20k, 51] Hz, high cut
 8 “shp”: linf [0, 250, 51] shape

 9 “sprd”: int [0…50] spread
10 “diff”: int [0…100] diffusion
11 “spin”: int [0…100] spin

12 “ecl”: linf [0, 1200, 1201] ms, echo left

13 “ecr”: linf [0, 1200, 1201] ms, echo right

14 “efl”: linf [-100, 100, 201] %, feed left
15 “efr”: linf [-100, 100, 201] %, feed right

Chamber Reverb

 0 “mdl”: CHAMBER

 1 “pdel”: int [0…200] ms, pre-delay
 2 “size”: linf [4, 76, 145] m, room size

 3 “dcy”: logf [.3, 25, 101] s, decay
 4 “mult”: logf [.25, 4, 101] bass multiplier

 5 “damp”: logf [1k, 20k, 51] Hz, damping
 6 “lc”: logf [20, 400, 51] Hz, low cut

 7 “hc”: logf [200, 20k, 51] Hz, high cut

 8 “shp”: linf [0, 250, 51] shape
 9 “sprd”: int [0…50] spread

10 “diff”: int [0…100] diffusion
11 “spin”: int [0…100] spin

12 “ecl”: linf [0, 300, 301] ms, echo left
13 “ecr”: linf [0, 300, 301] ms, echo right

14 “ell”: fader lvl dB, echo left
15 “elr”: fader lvl dB, echo right

©Patrick-Gilles Maillot 36 WING OSC – V 0.3.2

Plate Reverb

 0 “mdl”: PLATE

 1 “pdel”: int [0…200] ms, pre-delay

 2 “size”: linf [4, 76, 145] m, room size

 3 “dcy”: logf [.3, 25, 101] s, decay
 4 “mult”: logf [.25, 4, 101] bass multiplier

 5 “damp”: logf [1k, 20k, 51] Hz, damping
 6 “lc”: logf [20, 400, 51] Hz, low cut
 7 “hc”: logf [200, 20k, 51] Hz, high cut

 8 “att”: linf [0, 100, 101] attack
 9 “sprd”: int [0…50] spread

10 “diff”: int [0…100] diffusion
11 “spin”: int [0…100] spin

12 “ecl”: linf [0, 1200, 1201] ms, echo left
13 “ecr”: linf [0, 1200, 1201] ms, echo right
14 “efl”: linf [-100, 100, 201] %, feed left

15 “efr”: linf [-100, 100, 201] %, feed right

Concert Reverb

 0 “mdl”: CONCERT

 1 “pdel”: int [0…200] ms, pre-delay
 2 “size”: linf [20, 76, 113] m, room size

 3 “dcy”: logf [.3, 29, 51] s, decay

 4 “mult”: logf [.25, 4, 101] bass multiplier
 5 “damp”: logf [1k, 20k, 51] Hz, damping

 6 “lc”: logf [20, 400, 51] Hz, low cut
 7 “hc”: logf [200, 20k, 51] Hz, high cut

 8 “shp”: linf [0, 50, 51] shape
 9 “sprd”: int [0…50] spread

10 “diff”: int [1…16] diffusion
11 “depth”:int [0, 100] depth

12 “rfl”: linf [0, 1200, 1201] ms, refl. left

13 “rfr”: linf [0, 1200, 1201] ms, refl. right
14 “rfll”: fader lvl dB, reflection left

15 “rflr”: fader lvl dB, reflection right
16 “spin”: int [0…100] spin

17 “crs”: int [1…100] chorus

Ambiance

 0 “mdl”: AMBI
 1 “pdel”: int [0…200] ms, pre-delay

 2 “size”: linf [2, 100, 99] m, room size
 3 “dcy”: logf [.2, 7.3, 101] s, decay

 4 “tail”: int [0…100] tail gain
 5 “damp”: logf [1k, 20k, 51] Hz, damping

 6 “diff”: int [1…30] diffusion
 7 “mod”: int [1…100] modulation speed
 8 “lc”: logf [20, 400, 51] Hz, low cut

 9 “hc”: logf [200, 20k, 51] Hz, high cut

©Patrick-Gilles Maillot 37 WING OSC – V 0.3.2

VSS3 Reverb

 0 “mdl”: V-ROOM

 1 “pdel”: int [0…200] ms, pre-delay

 2 “size”: int [0…50] size

 3 “dcy”: logf [.1, 20, 101] s, decay
 4 “dens”: linf [1, 30, 30] density

 5 “erlvl”: linf [0, 100, 101] %, Early level
 6 “lmult”: logf [.1, 10, 101] low multiplier
 7 “hmult”: logf [.1, 10, 101] high multiplier

 8 “lc”: logf [20, 400, 51] Hz, low cut
 9 “hc”: logf [200, 20k, 51] Hz, high cut

10 “frz”: int [0, 1] freeze
11 “erl”: linf [0, 200, 201] ms, e. ref. left

12 “err”: linf [0, 200, 201] ms, e. ref. right
13 “add”: int [0, 1] add

Vintage Room

 0 “mdl”: V-ROOM

 1 “pdel”: int [0…200] ms, pre-delay
 2 “size”: int [0…50] size

 3 “dcy”: logf [.1, 20, 101] s, decay
 4 “dens”: linf [1, 30, 30] density

 5 “erlvl”: linf [0, 100, 101] %, Early level

 6 “lmult”: logf [.1, 10, 101] low multiplier
 7 “hmult”: logf [.1, 10, 101] high multiplier

 8 “lc”: logf [20, 400, 51] Hz, low cut
 9 “hc”: logf [200, 20k, 51] Hz, high cut

10 “frz”: int [0, 1] freeze

Vintage Reverb,

 0 “mdl”: V-REV

 1 “pdel”: int [0…120] ms, pre-delay
 2 “dcy”: linf [.4, 4.5, 83] s, decay
 3 “lmult”: logf [.5, 2, 51] low multiplier

 4 “hmult”: logf [.25, .67, 51] high multiplier
 5 “mod”: int [0…100] modulation speed

 6 “lc”: logf [20, 400, 51] Hz, low cut

 7 “hc”: logf [5000, 20k, 31] Hz, high cut

 8 “out”: str [FRONT, REAR] output
 9 “trans”: int [0…1] transformer

Vintage Plate

 0 “mdl”: V-PLATE

 1 “pdel”: int [0…250] ms, pre-delay
 2 “dcy”: linf [1, 6, 101] s, decay

 3 “lc”: logf [20, 400, 51] Hz, low cut
 4 “col”: linf [-20, 20, 42] color

©Patrick-Gilles Maillot 38 WING OSC – V 0.3.2

Gated Reverb

 0 “mdl”: GATED

 1 “pdel”: int [0…200] ms, pre-delay

 2 “att”: int [4…30] attack

 3 “dcy”: logf [.14, 1, 101] s, decay
 4 “dens”: int [0…100] density

 5 “diff”: int [0…100] diffusion
 6 “sprd”: int [0…50] spread
 7 “lc”: logf [20, 400, 51] Hz, low cut

 8 “hfs”: logf [200, 20k, 51] Hz, high freq
 9 “hsg”: linf [-30, 0, 61] dB, high gain

Reverse Reverb

 0 “mdl”: REVERSE
 1 “pdel”: int [0…200] ms, pre-delay

 2 “rise”: int [4…50] rise

 3 “dcy”: logf [.14, 1, 101] s, decay

 4 “diff”: int [0…30] diffusion

 5 “sprd”: int [0…100] spread
 6 “lc”: logf [20, 400, 51] Hz, low cut

 7 “hfs”: logf [200, 20k, 51] Hz, high freq
 8 “hsg”: linf [-30, 0, 61] dB, high gain

Delay/Reverb

 0 “mdl”: DEL/REV

 1 “time”: linf [0, 3000, 3000] ms, time
 2 “feed”: linf [0, 100, 101] %, feed

 3 “fhc”: logf [200, 2000, 51] Hz, feed HC
 4 “dly”: linf [0, 100, 101] %, delay

 5 “d2r”: linf [0, 100, 101] %, delay→rev
 6 “pdel”: int [0…200] ms, pre delay

 7 “size”: int [2…100] size
 8 “dcy”: logf [.1, 5, 51] s, decay
 9 “damp”: logf [1000, 20k, 51] Hz, damp

10 “rlc”: logf [20, 400, 51] Hz, rev LC
11 “i2r”: linf [0, 100, 101] %, in→rev

Shimmer Reverb

 0 “mdl”: SHIMMER
 1 “pdel”: int [0…250] ms, pre delay

 2 “size”: int [2…50] size

 3 “dcy”: logf [1, 20, 101] s, decay

 4 “lc”: logf [25, 250, 51] Hz, low cut

 5 “hc”: logf [500, 7000, 51] Hz, high cut
 6 “damp”: linf [0, 100, 101] %, damp

 7 “shim”: linf [0, 100, 101] %, shimmer
 8 “shine”: linf [0, 100, 101] %, shine

©Patrick-Gilles Maillot 39 WING OSC – V 0.3.2

Spring Reverb

 0 “mdl”: SPRING

 1 “dcy”: logf [1.5, 6, 101] s, decay

 2 “dens”: linf [1, 30, 30] density

 3 “low”: linf [1, 50, 50] bass
 4 “high”: linf [1, 50, 50] trebble

Dimension CRS

 0 “mdl”: DIMCRS
 1 “sw1”: int [0, 1] sw1
 2 “sw2”: int [0, 1] sw2

 3 “sw3”: int [0, 1] sw3
 4 “sw4”: int [0, 1] sw4

 5 “in”: str [MONO, STEREO] input
 6 “drysw”: int [0, 1] dry

Stereo Chorus

 0 “mdl”: CHORUS
 1 “lc”: logf [20, 400, 51] Hz, LC
 2 “hc”: logf [200, 20000, 51] Hz, HC

 3 “wave”: linf [0, 100, 101] waveform
 4 “phase”: linf [0, 100, 101] phase

 5 “mix”: linf [0, 100, 101] %, mix
 6 “dlyl”: linf [5, 50, 226] ms, dely l

 7 “dlyr”: linf [5, 50, 226] ms, dely r
 8 “depl”: linf [0, 100, 101] %, depth l
 9 “depr”: linf [0, 100, 101] %, depth r

10 “sprd”: linf [0, 100, 101] %, spread

11 “spd”: logf [.05, 5, 201] Hz, speed

Stereo Flanger

 0 “mdl”: CHORUS

 1 “lc”: logf [20, 400, 51] Hz, LC

 2 “hc”: logf [200, 20000, 51] Hz, HC
 3 “flc”: logf [20, 400, 51] Hz, feed LC
 4 “fhc”: logf [200, 20000, 51] Hz, feed HC

 5 “mix”: linf [0, 100, 101] %, mix
 6 “dlyl”: linf [5, 20, 196] ms, dely l

 7 “dlyr”: linf [5, 20, 196] ms, dely r
 8 “depl”: linf [0, 100, 101] %, depth l

 9 “depr”: linf [0, 100, 101] %, depth r

10 “phase”: linf [0, 180, 181] phase
11 “spd”: logf [.05, 5, 201] Hz, speed

12 “feed”: linf [-90, 90, 181] %, feed

©Patrick-Gilles Maillot 40 WING OSC – V 0.3.2

Stereo Delay

 0 “mdl”: ST-DL

 1 “time”: linf [1, 3000, 3000] ms, time

 2 “mode”: str [ST, X, M] mode

 3 “fact”: str [1/3, 1/2, 2/3, 3/4, 1, 5/4,
 4/3, 3/2, 2] factor

 4 “pat”: str [1/2:1, 2/3:1, 3/4:1, 7/8:1,
 1:1, 1:9/8, 1:5/4, 1:4/3,
 1:3/2] pattern

 5 “offset”:int [-50…50] ms, offset
 6 “feed”: linf [0, 100, 101] %, feed

 7 “flc”: logf [20, 400, 51] Hz, feed L cut
 8 “fhc”: logf [200, 20000, 51] Hz, feed H cut

 9 “lc”: logf [20, 400, 51] Hz, low cut
10 “hc”: logf [200, 20000, 51] Hz, high cut

UltraTap Delay

 0 “mdl”: TAP-DL

 1 “time”: linf [1, 2000, 2000] ms, time
 2 “rep”: int [1..16] repeat

 3 “slp”: linf [-6, 6, 121] dB, slope
 4 “fact”: str [1/3, 1/2, 2/3, 3/4, 1, 5/4,

 4/3, 3/2, 2] factor
 5 “pdel”: linf [0, 500, 501] ms, pre delay

 6 “mode”: str [MOVE, JUMP, FOCUS, SPREAD] mode

 7 “wid”: linf [-100, 100, 201] %, width
 8 “diff”: linf [0, 100, 101] diffusion

 9 “lc”: logf [20, 400, 51] Hz, low cut
10 “hc”: logf [200, 20000, 51] Hz, high cut

Tape Delay

 0 “mdl”: TAPE-DL
 1 “time”: linf [60, 650, 591] ms, time
 2 “sust”: linf [0, 100, 101] %, sustain

 3 “drv”: linf [0, 100, 101] %, drive
 4 “wf”: linf [0, 100, 101] %, flutter

OilCan Delay

 0 “mdl”: OILCAN

 1 “time”: linf [0, 10, 1001] time

 2 “sust”: linf [0, 10, 101] %, sustain

 3 “wb”: linf [0, 10, 101] %, wobble

 4 “tone”: linf [0, 10, 101] %, tone

©Patrick-Gilles Maillot 41 WING OSC – V 0.3.2

BBD Delay

 0 “mdl”: BBD-DL

 1 “dly”: linf [0, 100, 1001] time

 2 “feed”: linf [0, 100, 101] %, feed

Stereo Pitch

 0 “mdl”: PITCH
 1 “semi”: int [-12…12] semitones
 2 “cent”: int [-50…50] cent

 3 “dly”: linf [0, 500, 501] ms, delay
 4 “lc”: logf [20, 400, 51] Hz, low cut

 5 “hc”: logf [200, 20000, 51] Hz, high cut
 6 “mix”: linf [0, 100, 101] %, mix

Dual Pitch

 0 “mdl”: D-PITCH
 1 “semi1”: int [-12…12] semitones 1

 2 “cent1”: int [-50…50] cent 1

 3 “dly1”: linf [0, 500, 501] ms, delay 1
 4 “pan1”: linf [-100, 100, 201] %, pan 1

 5 “lvl1”: fader lvl 1 dB
 6 “semi2”: int [-12…12] semitones 2

 7 “cent2”: int [-50…50] cent 2
 8 “dly2”: linf [0, 500, 501] ms, delay 2
 9 “pan2”: linf [-100, 100, 201] %, pan 2

10 “lvl2”: fader lvl 2 dB
11 “lc”: logf [20, 400, 51] Hz, low cut

12 “hc”: logf [200, 20000, 51] Hz, high cut

©Patrick-Gilles Maillot 42 WING OSC – V 0.3.2

Filter plugins

Tilt Filter

 0 “mdl”: TILT

 1 “tilt”: linf [-6, 6, 49] tilt

Maxer Filter

 0 “mdl”: TILT
 1 “low”: linf [0, 100, 101] %, low cont

 2 “proc”: linf [0, 100, 101] %, high proc

AP90axer Filter

 0 “mdl”: AP1
 1 “freq”: logf [100, 10000, 100] Hz, freq

AP180 Filter

 0 “mdl”: AP2

 1 “f”: logf [100, 10000, 100] Hz, freq
 2 “q”: logf [.442, 10, 181] q

©Patrick-Gilles Maillot 43 WING OSC – V 0.3.2

Gate plugins

Standard Gate/Expander

 0 “mdl”: GATE

 1 “thr”: linf [-60, 0, 121] dB, thr
 2 “ratio”: flt [1.2, 1.3, 1.5, 2.0, 3.0,

 5.0, 10.0] ratio
 3 “att”: linf [0, 200, 201] ms, attack

 4 “rel”: linf [20, 4000, 130] ms, release

 5 “filt”: str [OFF, BP, LP6, LP12, HP6,
 HP12] filter

 6 “g”: linf [-15, 15, 301] dB, gain
 7 “f”: logf [20, 20000, 961] Hz, freq

 8 “q”: logf [.442, 10, 181] q
 9 “mode”: str [low, high] mode

Standard Ducker

 0 “mdl”: DUCK
 1 “thr”: linf [-80, 0, 161] dB, thr
 2 “range”: linf [3, 60, 115] dB, range

 3 “att”: linf [0, 120, 121] ms, attack
 3 “hold”: linf [1, 200, 200] ms, hold

 5 “rel”: linf [20, 4000, 130] ms, release

DBX 902 DeEsser

 0 “mdl”: DS902

 1 “f”: logf [800, 8000, 130] Hz, freq
 2 “range”: linf [3, 12, 25] dB, range
 3 “mode”: str [FULL, HF] mode

DrawMore Expander Gate 241

 0 “mdl”: DUCK
 1 “thr”: linf [-80, 0, 161] dB, thr

 2 “slow”: int [0, 1] slow

Leveling Amplifier 2A

 0 “mdl”: LA
 1 “ingain”:linf [0, 100, 101] gain

 2 “peak”: linf [0, 100, 101] peak
 3 “mode”: str [comp, lim] mode

©Patrick-Gilles Maillot 44 WING OSC – V 0.3.2

Wave Designer

 0 “mdl”: WAVE

 1 “att”: linf [-15, 15, 61] dB, attack

 2 “sust”: linf [-24, 24, 97] dB, sustain

 3 “g”: linf [-18, 9, 55] dB, gain

Auto Rider Dynamics

 0 “mdl”: RIDE

 1 “thr”: linf [-54, 18, 73] dB, thr
 2 “tgt”: linf [-48, 0, 97] dB, target
 3 “spd”: int [1…50] speed

 4 “ratio”: flt [2.0, 4.0, 8.0,
 20.0, 100.0] ratio

 5 “hld”: logf [.1, 10, 65] s, hold
 6 “range”: linf [1, 15, 29] dB, range

Soul Warmth Preamp

 0 “mdl”: WARM
 1 “drv”: linf [10, 100, 91] %, drive
 2 “hrm”: linf [-100, 100,201] harm

 3 “col”: linf [-1, 1, 41] color
 3 “trim”: linf [-18, 6, 49] dB, trim

Even 88-Gate

 0 “mdl”: E88
 1 “thr”: linf [-40, 0, 81] dB, thr

 2 “hyst”: linf [0, 25, 51] dB, hyst
 3 “range”: linf [0, 60, 61] dB, range
 4 “rel”: logf [100, 3000, 130] ms, release

 5 “fast”: int [0, 1] fast
 6 “m40”: int [0, 1] thr

SSL 9000 Channel Gate

 0 “mdl”: 9000G
 1 “thr”: linf [-40, 0 81] dB, input
 2 “range”: linf [-0, 40, 41] dB

 3 “hld”: logf [10, 4000, 130] ms, hold
 4 “rel”: logf [100, 4000, 130] ms, release

 5 “fast”: int [0, 1] fast
 6 “mode”: str [GATE, EXP] mode

©Patrick-Gilles Maillot 45 WING OSC – V 0.3.2

76 Limiter Amp

 0 “mdl”: 76LA

 1 “in”: linf [-48, 0, 97] dB, input

 2 “out”: linf [-48, 0, 97] dB

 3 “att”: linf [1, 7, 61] attack
 4 “rel”: linf [1, 7, 61] release

 5 “ratio”: str [4, 8, 12, 20, ALL] ratio

Dynamic EQ

 0 “mdl”: DEQ
 1 “thr”: linf [-60, 0, 121] dB, thr

 2 “ratio”: flt [1.2, 1.3, 1.5, 2.0,
 3.0, 5.0, 10.0] ratio

 3 “att”: linf [0, 200, 201] ms, attack
 4 “rel”: logf [20, 4000, 130] ms, release

 5 “filt”: str [OFF, BP, LP6, LP12,

 HP6, HP12] filter

 6 “g”: linf [-15, 15, 301] dB, gain

 7 “f”: logf [20, 20000, 961] Hz, freq
 8 “g”: logf [.442, 10, 181] q

 9 “mode”: str [low, high] mode

©Patrick-Gilles Maillot 46 WING OSC – V 0.3.2

EQ plugins

Standard EQ

Channel:

 0 “mdl”: STD

 1 “lg”: linf [-15, 15, 301] dB, gain l
 2 “lf”: logf [20, 2000, 641] Hz, freq l

 3 “lq”: logf [0.442, 10, 181] q l

 4 “leq”: str [SHV, PEQ] eq l

 5 “1g”: linf [-15, 15, 301] dB, gain 1
 6 “1f”: logf [20, 20000, 961] Hz, freq 1
 7 “1q”: logf [0.442, 10, 181] q 1

 8 “2g”: linf [-15, 15, 301] dB, gain 2
 9 “2f”: logf [20, 20000, 961] Hz, freq 2

10 “2q”: logf [0.442, 10, 181] q 2
11 “3g”: linf [-15, 15, 301] dB, gain 3

12 “3f”: logf [20, 20000, 961] Hz, freq 3
13 “3q”: logf [0.442, 10, 181] q 3
14 “4g”: linf [-15, 15, 301] dB, gain 4

15 “4f”: logf [20, 20000, 961] Hz, freq 4
16 “4q”: logf [0.442, 10, 181] q 4

17 “hg”: linf [-15, 15, 301] dB, gain h
18 “hf”: logf [50, 20000, 833] Hz, freq h

19 “hq”: logf [0.442, 10, 181] q h
20 “heq”: str [SHV, PEQ] eq h

Bus, mtx, main:

 0 “mdl”: STD
 1 “lg”: linf [-15, 15, 301] dB, gain l

 2 “lf”: logf [20, 2000, 641] Hz, freq l

 3 “lq”: logf [0.442, 10, 181] q l

 4 “leq”: str [SHV, PEQ, CUT] eq l
 5 “1g”: linf [-15, 15, 301] dB, gain 1

 6 “1f”: logf [20, 20000, 961] Hz, freq 1
 7 “1q”: logf [0.442, 10, 181] q 1
 8 “2g”: linf [-15, 15, 301] dB, gain 2

 9 “2f”: logf [20, 20000, 961] Hz, freq 2
10 “2q”: logf [0.442, 10, 181] q 2

11 “3g”: linf [-15, 15, 301] dB, gain 3
12 “3f”: logf [20, 20000, 961] Hz, freq 3

13 “3q”: logf [0.442, 10, 181] q 3
14 “4g”: linf [-15, 15, 301] dB, gain 4
15 “4f”: logf [20, 20000, 961] Hz, freq 4

16 “4q”: logf [0.442, 10, 181] q 4
17 “5g”: linf [-15, 15, 301] dB, gain 5

18 “5f”: logf [20, 20000, 961] Hz, freq 5

19 “5q”: logf [0.442, 10, 181] q 5

20 “6g”: linf [-15, 15, 301] dB, gain 6
21 “6f”: logf [20, 20000, 961] Hz, freq 6
22 “7q”: logf [0.442, 10, 181] q 6

23 “hg”: linf [-15, 15, 301] dB, gain h
24 “hf”: logf [50, 20000, 833] Hz, freq h

25 “hq”: logf [0.442, 10, 181] q h
26 “heq”: str [SHV, PEQ, CUT] eq h

27 “tilt”: linf [-6, 6, 49] dB, tilt

©Patrick-Gilles Maillot 47 WING OSC – V 0.3.2

Even 84 EQ

 0 “mdl”: E84

 1 “mix”: linf [0, 125, 126] %, mix
 2 “g”: linf [-20, 20, 81] dB, gain

 3 “lf”: str [OFF, 35, 60, 110, 220] lf freq
 4 “lg”: linf [-5, 5, 101] lf gain
 5 “mf”: str [OFF, 350, 700, 1k6, 3k2,

 4k8, 7k2] mid freq
 6 “mg”: linf [-5, 5, 101] mid gain

 7 “mq”: str [LOW, HIGH] mid q
 8 “hf”: str [10k, 12k, 16k, OFF] hf freq

 9 “hg”: linf [-5, 5, 101] hf gain

Even 88-Formant EQ

 0 “mdl”: E88
 1 “mix”: linf [0, 125, 126] %, mix

 2 “lf”: linf [0, 10, 101] lf freq
 3 “lg”: linf [-5, 5, 101] lf gain

 4 “lq”: str [LOW, HIGH] lf q
 5 “lt”: str [BELL, SHELV] lf type

 6 “lmf”: linf [0, 10, 101] lm freq

 7 “lmg”: linf [-5, 5, 101] lm gain

 8 “lmq”: linf [0, 10, 101] lm q
 9 “hmf”: linf [0, 10, 101] hm freq
10 “hmg”: linf [-5, 5, 101] hm gain

11 “hmq”: linf [0, 10, 101] hm q
12 “hf”: linf [0, 10, 101] hm freq

13 “hg”: linf [-5, 5, 101] hf gain
14 “hq”: str [LOW, HIG] hf q

15 “ht”: str [BELL, SHELV] hf type

Focusrite ISA 110 EQ

 0 “mdl”: F110

 1 “mix”: linf [0, 125, 126] %, mix

 2 “peq”: int [0, 1] peq on
 3 “lmf”: linf [0, 10, 101] lm freq

 4 “lmg”: linf [-5, 5, 101] lm gain
 4 “lmq”: linf [0, 10, 101] lm q

 5 “lmf3”: int [0, 1] lm /3
 6 “hmf”: linf [0, 10, 101] hm freq
 7 “hmg”: linf [-5, 5, 101] hm gain

 8 “hmq”: linf [0, 10, 101] hm q
 9 “hmf3”: int [0, 1] hm x3

10 “shv”: inf [0, 1] shv on
11 “lf”: str [33, 56, 95, 160,

 270, 460] lf freq
11 “lg”: linf [-5, 5, 101] lf gain
13 “hf”: str [3k3, 4k7,6k8, 10k,

 15k, 18k] hf freq

14 “hg”: linf [-5, 5, 101] hf q

15 “g”: linf [-18, 18, 73] gain

©Patrick-Gilles Maillot 48 WING OSC – V 0.3.2

PIA 560 EQ

 0 “mdl”: PIA

 1 “mix”: linf [0, 125, 126] %, mix
 2 “gain”: linf [-12, 12, 241] dB

 3 “31”: linf [-12, 12, 241] dB
 4 “63”: linf [-12, 12, 241] dB
 5 “125”: linf [-12, 12, 241] dB

 6 “250”: linf [-12, 12, 241] dB
 7 “500”: linf [-12, 12, 241] dB

 8 “1k”: linf [-12, 12, 241] dB
 9 “2k”: linf [-12, 12, 241] dB

10 “4k”: linf [-12, 12, 241] dB
11 “8k”: linf [-12, 12, 241] dB

12 “16k”: linf [-12, 12, 241] dB

Pulsar P1a/M5 EQ

 0 “mdl”: PULSAR
 1 “mix”: linf [0, 125, 126] %, mix

 2 “eq1”: int [0, 1] eq1 on
 3 “1lb”: linf [0, 10, 101] lf boost

 4 “1latt”: linf [0, 10, 101] lf att

 4 “1lf”: str [20, 30,60, 100] Hz, lf freq

 5 “1hw”: linf [0, 10, 101] hf wid
 6 “1hb”: linf [0, 10, 101] hf boost
 7 “1hf”: str [3k, 4k,, 5k, 8k, 10k,

 12k, 16k] Hz, hf freq
 8 “1hatt”: linf [0, 10, 101] hf att

 9 “1hattf”:str [5k, 10k, 20k] hf att
10 “eq5”: int [0, 1] eq5 on

11 “5lb”: linf [0, 10, 101] lm boost
12 “5lf”: str [200, 300, 500, 700,
 1k] Hz, lf freq

13 “5md”: linf [0, 10, 101] mid dip
14 “5mf”: str [200, 300, 500, 700, 1k, 1k5, 2k,

3k, 4k, 5k,7k] Hz, mid freq
15 “5hb”: linf [0, 10, 101] HM boost

16 “5hf”: str [1k5, 2k, 3k, 4k,

 5k] Hz, hf freq

Soul Analog EQ

 0 “mdl”: SOUL

 1 “mix”: linf [0, 125, 126] %, mix
 2 “lf”: linf [0, 10, 101] lo freq

 3 “lg”: linf [-5, 5, 101] lo gain
 4 “lmf”: linf [0, 10, 101] lm freq

 5 “lmf3”: int [0, 1] lm /3
 6 “lmq”: linf [0, 10, 101] lm q
 7 “lmg”: linf [-5, 5, 101] lm gain

 8 “hmf”: linf [0, 10, 101] hm freq

 9 “hmf3”: int [0, 1] hm x3

10 “hmq”: linf [0, 10, 101] hm q

11 “hmg”: linf [-5, 5, 101] hm gain

©Patrick-Gilles Maillot 49 WING OSC – V 0.3.2

12 “hf”: linf [0, 10, 101] hf freq

13 “hg”: linf [-5, 5, 101] hf gain

©Patrick-Gilles Maillot 50 WING OSC – V 0.3.2

Compressor plugins

Standard compressor

 0 “mdl”: COMP

 1 “mix”: linf [0, 100, 101] %, mix
 2 “gain”: linf [-6, 12, 37] dB, gain

 3 “thr”: linf [-60, 0, 121] dB, thr
 4 “ratio”: flt [1.1, 1.2, 1.3, 1.5, 1.7, 2.0,

 2.5, 3.0, 3.5, 4.0, 5.0, 6.0,

 8.0, 10., 20., 50., 100.] ratio
 4 “knee”: int [0…5] knee

 5 “det”: str [PEAK, RMS] detector
 6 “att”: linf [0, 120, 121] ms, attack

 7 “hld”: linf [1, 200, 200] ms, hold
 8 “rel”: logf [4, 4000, 130] ms release

 9 “env”: str [LIN, LOG] envelope
10 “auto”: int [0, 1] auto

Standard expander

 0 “mdl”: EXP

 1 “mix”: linf [0, 100, 101] %, mix
 2 “gain”: linf [-6, 12, 37] dB, gain

 3 “thr”: linf [-60, 0, 121] dB, thr
 4 “ratio”: flt [1.1, 1.2, 1.3, 1.5, 1.7, 2.0,

 2.5, 3.0, 3.5, 4.0, 5.0, 6.0,
 8.0, 10., 20., 50., 100.] ratio

 4 “knee”: int [0…5] knee
 5 “det”: str [PEAK, RMS] detector
 6 “att”: linf [0, 120, 121] ms, attack

 7 “hld”: linf [1, 200, 200] ms, hold

 8 “rel”: logf [4, 4000, 130] ms release

 9 “env”: str [LIN, LOG] envelope
10 “auto”: int [0, 1] auto

BDX 160 Compressor/Limiter

 0 “mdl”: B160

 1 “mix”: linf [0, 100, 101] %, mix
 2 “gain”: linf [-6, 12, 37] dB, gain

 3 “thr”: logf [.01, 5, 65] thr
 4 “ratio”: flt [1.1, 1.2, 1.3, 1.5, 1.7, 2.0,

 2.5, 3.0, 3.5, 4.0, 5.0, 6.0,
 8.0, 10., 20., 50.] ratio

BDX 560 Easy Compressor

 0 “mdl”: B560

 1 “mix”: linf [0, 100, 101] %, mix
 2 “gain”: linf [-6, 12, 37] dB, gain

 3 “thr”: linf [-40, 20, 121] dB, thr

 4 “ratio”: flt [1.1, 1.2, 1.5, 2.0, 3.0, 4.0,

 5.0, 7.0, 10., 50., 999.,
 -5.0, -3.0, -2.0, -1.0] ratio

©Patrick-Gilles Maillot 51 WING OSC – V 0.3.2

 5 “auto”: int [0, 1] auto

Even Compressor/Limiter

 0 “mdl”: ECL33
 1 “mix”: linf [0, 100, 101] %, mix

 2 “gain”: linf [-6, 12, 37] dB, gain
 3 “lon”: int [0, 1] lim on
 4 “lthr”: linf [-12, 0, 25] dB, lim thr

 5 “lrec”: str [50, 100, 200, 800,
 A1, A2] lim rec

 6 “lfast”: int [0, 1] lim fast
 7 “con”: int [0, 1] comp on

 8 “cthr”: linf [-35, -5, 61] dB, comp thr
 9 “ratio”: str [1.5, 2.0. 3.0, 4.0, 6.0] ratio

10 “crec”: str [100, 400, 800, 1500
 A1, A2] comp rec
11 “cfast”: int [0, 1] comp fast

Fairkid Model 670

 0 “mdl”: F670
 1 “mix”: linf [0, 100, 101] %, mix

 2 “gain”: linf [-6, 12, 37] dB, gain
 3 “in”: linf [-20, 0, 81] dB, input

 4 “thr”: linf [0, 10, 41] thr
 5 “time”: int [1…6] time
 6 “bias”: linf [0, 1, 101] bias

Leveling Amplifier 2A

 0 “mdl”: LA
 1 “mix”: linf [0, 100, 101] %, mix

 2 “gain”: linf [-6, 12, 37] dB, gain
 3 “ingain”:linf [0, 100, 101] gain
 4 “peak”: linf [0, 100, 101] peak

 5 “mode”: str [comp, lim] mode

No Stressor

 0 “mdl”: NSTR

 1 “mix”: linf [0, 100, 101] %, mix
 2 “gain”: linf [-6, 12, 37] dB, gain

 3 “in”: linf [0, 10, 101] input

 4 “ou”: linf [0, 10, 101] output

 5 “att”: linf [0, 10, 101] attack

 6 “rel”: linf [0, 10, 101] release
 5 “ratio”: str [1.5:1, 2:1, 3:1, 4:1, 6:1,

 10:1, 20:1, NUKE] ratio

©Patrick-Gilles Maillot 52 WING OSC – V 0.3.2

Eternal Bliss

 0 “mdl”: BLISS

 1 “mix”: linf [0, 100, 101] %, mix

 2 “gain”: linf [-6, 12, 37] dB, gain

 3 “thr”: linf [-50, 0, 101] dB, thr
 4 “ratio”: flt [1.2, 1.3, 1.6, 2.0, 3.0,

 -1.0, -2.0, -3.0, -4.0] ratio
 5 “att”: linf [.4, 150, 65] ms, attack
 6 “rel”: logf [5, 1200, 65] ms release

 7 “afast”: int [0, 1] auto fast
 8 “alog”: int [0, 1] anti log

 9 “glon”: int [0, 1] gr limit on
10 “glim”: linf [-21, 0, 43] gr limit

Red Compressor

 0 “mdl”: RED3

 1 “mix”: linf [0, 100, 101] %, mix
 2 “gain”: linf [-6, 12, 37] dB, gain

 3 “thr”: linf [-48, 0, 97] dB, thr
 4 “ratio”: flt [1.1, 1.2, 1.3, 1.5, 2.0,

 2.5, 3.0, 3.5, 4.0, 5.0,
 6.0, 8.0, 10.] ratio

 5 “att”: linf [1, 50, 65] ms, attack

 7 “rel”: logf [100, 4000, 65] ms release
 7 “auto”: int [0, 1] auto

Soul 9000 Channel Compressor
 0 “mdl”: 9000C

 1 “mix”: linf [0, 100, 101] %, mix
 2 “gain”: linf [-6, 12, 37] dB, gain

 3 “thr”: linf [-48, 0, 97] dB, thr
 4 “ratio”: flt [1.3, 1.43, 1.57, 1.8, 2.0,
 2.8, 3.3, 4.0, 5.0 ,6.0,

 7.0, 9.0, 12.0, 20.0, 50.0,
 100.0] ratio

 5 “fast”: int [0, 1] fast att
 6 “rel”: logf [100, 4000, 65] ms release

 7 “peak”: int [0, 1] peak

Soul G Buss Compressor

 0 “mdl”: SBUS

 1 “mix”: linf [0, 100, 101] %, mix

 2 “gain”: linf [-6, 12, 37] dB, gain
 3 “thr”: linf [-48, 0, 81] dB, thr

 4 “ratio”: flt [1.5, 2.0, 3.0, 4.0, 5.0,
 10.0] ratio

 5 “att”: flt [0.1, 0.3, 1.0, 3.0, 10.0,
 30.0] ratio
 6 “rel”: str [0.1, 0.2, 0.4, 0.8, 1.6,

 AUTO] release

©Patrick-Gilles Maillot 53 WING OSC – V 0.3.2

Wave Designer

 0 “mdl”: WAVE

 1 “mix”: linf [0, 100, 101] %, mix

 2 “gain”: linf [-6, 12, 37] dB, gain

 3 “att”: linf [-15, 15, 61] dB, attack
 4 “sust”: linf [-24, 24, 97] dB, sustain

 5 “g”: linf [-16, 9, 55] dB, gain

Amplifier76 Limiting Amplifier

 0 “mdl”: 76LA
 1 “mix”: linf [0, 100, 101] %, mix

 2 “gain”: linf [-6, 12, 37] dB, gain
 3 “in”: linf [-48, 0, 97] dB, input

 4 “out”: linf [-48, 0, 97] dB
 5 “att”: linf [1, 7, 61] attack

 6 “rel”: linf [1, 7, 61] release

 7 “ratio”: str [4, 8, 12, 20, ALL] ratio

Auto Rider Dynamics

 0 “mdl”: RIDE

 1 “mix”: linf [0, 100, 101] %, mix

 2 “gain”: linf [-6, 12, 37] dB, gain

 3 “thr”: linf [-54, 18, 73] dB, thr
 4 “tgt”: linf [-48, 0, 97] dB, target
 5 “spd”: int [1…50] speed

 6 “ratio”: flt [2.0, 4.0, 8.0,
 20.0, 100.0] ratio

 7 “hld”: logf [.1, 10, 65] s, hold
 8 “range”: linf [1, 15, 29] dB, range

Draw More Compressor

 0 “mdl”: D241
 1 “mix”: linf [0, 100, 101] %, mix

 2 “gain”: linf [-6, 12, 37] dB, gain

 3 “thr”: linf [0, -60, 121] dB, thr
 4 “ratio”: flt [1.1, 1.2, 1.3, 1.5,

 1.7, 2.0, 3.0, 3.5,
 4.0, 5.0, 6.0, 8.0,

 10.0, 20.0, 50.0,

 100.0] ratio
 5 “att”: linf [.5, 100, 65] ms, attack

 6 “rel”: logf [50, 5000, 130] ms release
 7 “lim”: linf [-20, 0,41] dB, lim thr

 8 “lrel”: logf [50, 5000, 130] ms, lim rel
 9 “auto”: int [0, 1] auto

©Patrick-Gilles Maillot 54 WING OSC – V 0.3.2

Appendix: WING Icons
The table below gives the list of icons available with WING. The icon numbers are listed to the right of the

icons.

General:

[0…14]

Vocals and Mics:

[100…114]

Drums and Percussions:

[200…224]

©Patrick-Gilles Maillot 55 WING OSC – V 0.3.2

Strings and Winds:

[300…319]

Keys:

[400…409]

Speakers:

[500…524]

Specials:

[600…614]

©Patrick-Gilles Maillot 56 WING OSC – V 0.3.2

Appendix: WING Colors

WING colors are used in several areas such as channel strip color, scribble color, etc. The known colors are

shown below and indexed as values 1 to 12:

 1 2 3 4 5 6 7 8 9 10 11 12

1 gray blue

2 medium blue

3 dark blue

4 turquoise

5 green

6 olive green

7 yellow

8 orange

9 red

10 coral

11 pink

12 mauve

©Patrick-Gilles Maillot 57 WING OSC – V 0.3.2

Appendix: WING Snapshot and JSON Data Structure:

A WING snapshot (also called Snapfile when saved to a file) is organized as a collection of classes, sub-

classes and objects regrouping attributes and values in logical groups. These can be represented as a

hierarchical tree. A JSON10 notation is used to describe and store the hierarchical tree.

A complete WING snapfile is close to 460000 bytes and 28800 lines, containing a rather complex

hierarchical list of object identifiers and their associated values.

A WING snapfile does not contain read-only objects; i.e. there are more elements available than the one

saved in a snapfile!

Global Snapfile
A snapfile is divided in 4 sections: description, scopes, ae_data and ce_data, as shown below:

Descriptionn
description: This small section contains (as its name suggest) a description for the snapshot, including

name, and elements corresponding to the WING that generated the snapshot.

 “type”: string,
 “creator_fw”: string,
 “creator_sn”: string,

 “creator_model”: string,
 “creator_name”: string,

10 JavaScript Object Notation: an efficient way to represent structured objects. Also used as a data-interchange format.

©Patrick-Gilles Maillot 58 WING OSC – V 0.3.2

scopes
scopes: A large set of Boolean {true|false} values to list what has been saved at snapshot time that can

also be used as a reminder of the initial purpose of the snapshot. This set of values is also used at load

time to show what console parameter groups will be affected by the recall operation in adjusting what

should be loaded when recalling a scene.

The scopes class contains the following objects:

ch, aux, bus, main, mtx, fx, routin, routout, cfg, area, data, with:

“scopes”: {
 “ch”: {
 “1”: Boolean
 …
 “40”: Boolean
 }
 “aux”: {
 “1”: Boolean
 …
 “8”: Boolean

}
 “bus”: {

“1”: Boolean
 …
 “16”: Boolean
 }
 “main”: {

“1”: Boolean
 …
 “4”: Boolean
 }
 “mtx”: {

“1”: Boolean
 …
 “8”: Boolean
 }
 “fx”: {

“1”: Boolean
 …
 “16”: Boolean
 }
 “routin”: {

“1”: Boolean
 …
 “13”: Boolean

}
”routout”: {

“1”: Boolean
 …
 “11”: Boolean

}
”cfg”: {

“groups”: Boolean
“audio”: Boolean
“surface”: Boolean

}
”area”: {

“L”: Boolean
“C”: Boolean
“R”: Boolean

}

©Patrick-Gilles Maillot 59 WING OSC – V 0.3.2

”data”{
“1”: Boolean

 …
 “9”: Boolean

}
}

Scopes are not elements that can be programmatically changed. They are only set at snapshot time using

the console main LCD. As mentioned earlier, they are used at save time to notify what was targeted for

update, and at restore time on the console, to indicate what will be modified as the snapshot is restored

to the desk.

ae_data

ae_data stands for “Audio Engine”, and regroups a rather large set of attributes and values aimed at

registering all main settings of the WING audio engine, such as Routing, Channel EQ settings, FX

parameter values, etc., as shown in the figure below:

In the next pages, we present the structure, 1 block of parameters at a time. Understanding what

parameters are present in each block is a good way to better grasp and understand the vast range of

capabilities WING offers. It is also a good way to envision the parameter list one can get and set using wapi

(described later in this document) as the JSON structure parameters is a key subset of the tokens used by

the API for get() and set() functions.

Indeed, all tokens related to the audio engine can be directly coded from the JSON description, for

example, the C-like token notation for the JSON cfg.mon.1.pan element is named CFG_MON_1_PAN.

©Patrick-Gilles Maillot 60 WING OSC – V 0.3.2

We show in the following pages, the contents of the JSON tree structure after a console reset, so default

values are listed. In order to reduce the number of pages the JSON structure description would take; the

following notation is used:

“abc”: {}, means that “abc” uses the same structure definition as the previous

member in the JSON file, and:

“2”…”n”: {}, means that objects “2” to “n” use the same structure definition as

the previous member in the JSON file.

The ae_data class contains the following objects: cfg, io, ch, aux, bus, main, mtx, dca, mgrp, fx, cards, play,

rec, shown in the following pages using the notation conventions above.

“ae_data”: {
“cfg”: {

“clkrate”: 48000,
 “clksrc”: “INT”,
 “mainlink”: Boolean
 “dcamgrp”: Boolean
 “usbacfg”: “2/2”,
 “mon”: {
 “1”: {
 “inv”: Boolean
 “pan”: 0,
 “wid”: 100,
 “eq”: {
 “on”: Boolean
 “lsg”: 0,
 “lsf”: 60.13884,
 “1g”: 0,
 “1f”: 129.8763,
 “1q”: 1.995882,
 …
 “6g”: 0,
 “6f”: 6013.884,
 “6q”: 1.995882,
 “hsg”: 0,
 “hsf”: 11999.27
 },
 “lim”: 0,
 “dly”: {
 “on”: Boolean
 “m”: 0.1
 },
 “dim”: 20,
 “srclvl”: 0,
 “src”: “MAIN.1”
 },
 “2”: {},
 }
 “solo”: {
 “mode”: “LIVE”,
 “mon”: “A”,
 “mute”: Boolean
 “chtap”: “PFL”,
 “bustap”: “AFL”,
 “maintap”: “PFL”,
 “mtxtap”: “PFL”

©Patrick-Gilles Maillot 61 WING OSC – V 0.3.2

 },
 “rta”: {
 “dec”: “MED”,
 “det”: “RMS”,
 “range”: 30,
 “g”: 0,
 “auto”: true
 },
 “talk”: {
 “assign”: “OFF”,
 “A”: {
 “mode”: “AUTO”,
 “mondim”: Boolean
 “busdim”: 0,
 “B1”: Boolean
 …
 “B16”: Boolean
 “M1”: Boolean
 …
 “M4”: Boolean
 },
 “B”: {}
 },
 “osc”: {
 “1”: {
 “lvl”: -6,
 “mode”: “SINE”,
 “f”: 999.992
 },
 “2”: {}
 },

 “gpio”: {
}
“io”: {
 “altsw”: Boolean
 “in”: {
 “LCL”: {
 “1”: {

“mode”: “M”,
 “g”: 0,
 “vph”: Boolean
 “mute”: Boolean
 “col”: 1,
 “name”: string
 “icon”: 0,
 “tags”: string

}
 “2”…“8”: {}
 }
 “AUX”: {}
 “A”: {
 “1”: {
 “mode”: “M”,
 “g”: 0,
 “vph”: Boolean
 “mute”: Boolean
 “col”: 1,
 “name”: string
 “icon”: 0,
 “tags”: string
 },
 “2”…“48”: {}
 }
 “B”: {}

“C”: {}
 “SC”: {
 “1”: {
 “mode”: “M”,

©Patrick-Gilles Maillot 62 WING OSC – V 0.3.2

 “g”: 0,
 “vph”: Boolean
 “mute”: Boolean
 “col”: 1,
 “name”: string
 “icon”: 0,
 “tags”: string
 },
 “2”…“32”: {}
 }
 “USB”: {
 “1”: {
 “mode”: “ST”,
 “g”: 0,
 “vph”: Boolean
 “mute”: Boolean
 “col”: 8,
 “name”: “USB 1/2”,
 “icon”: 605,
 “tags”: string
 },
 “2”…“48”: {}
 }
 “CRD”: {
 “1”: {
 “mode”: “M”,
 “g”: 0,
 “vph”: Boolean
 “mute”: Boolean
 “col”: 1,
 “name”: string
 “icon”: 0,
 “tags”: string
 },
 “2”…“64”: {}
 }
 “MOD”: {}

 “PLAY”: {
 “1”: {
 “mode”: “M”,
 “g”: 0,
 “vph”: Boolean
 “mute”: Boolean
 “col”: 1,
 “name”: string
 “icon”: 0,
 “tags”: string
 },
 “2”…“4”: {}
 }
 “AES”: {
 “1”: {
 “mode”: “M”,
 “g”: 0,
 “vph”: Boolean
 “mute”: Boolean
 “col”: 1,
 “name”: string
 “icon”: 0,
 “tags”: string
 },

“2”: {}
 }
 “USR”: {
 “1”: {
 “mode”: “M”,
 “g”: 0,
 “vph”: Boolean

©Patrick-Gilles Maillot 63 WING OSC – V 0.3.2

 “mute”: Boolean
 “col”: 1,
 “name”: string
 “icon”: 0,
 “tags”: string
 },
 “2”…“24”: {}
 }
 “OSC”: {
 “1”: {
 “mode”: “M”,
 “g”: 0,
 “vph”: Boolean
 “mute”: Boolean
 “col”: 1,
 “name”: string
 “icon”: 0,
 “tags”: string
 },

“2”: {}
 }
 }
 “out”: {
 “LCL”: {
 “1”: {

 “grp”: “BUS”,
 “in”: 1
 },
 …
 “8”: {}
 }
 “AUX”: {}
 “A”: {
 “1”: {
 “grp”: “OFF”,
 “in”: 1
 },
 “2”…“48”: {}
 }

“B”: {}
“C”: {}
“SC”: {

 “1”: {
 “grp”: “OFF”,
 “in”: 1
 },
 “2”…“32”: {}
 }

“USB”: {
 “1”: {
 “grp”: “OFF”,
 “in”: 1
 },
 “2”…“48”: {}
 }
 “CRD”: {
 “1”: {
 “grp”: “OFF”,
 “in”: 1
 },
 “2”…“64”: {}
 }

“MOD”: {}
“REC”: {

 “1”: {
 “grp”: “OFF”,
 “in”: 1
 },

©Patrick-Gilles Maillot 64 WING OSC – V 0.3.2

 “2”…“4”: {}
 }

“AES”: {
 “1”: {
 “grp”: “OFF”,
 “in”: 1
 },
 “2”: {}
 }
 }
 “user”: {
 “1”: {
 “grp”: “OFF”,
 “in”: 1,
 “tap”: “PRE”,
 “lr”: “L+R”
 }
 “2”…“24”: {}
 }
}
“ch”: {
 “1”: {
 “in”: {
 “set”: {
 “srcauto”: Boolean
 “altsrc”: Boolean
 “inv”: Boolean
 “trim”: 0,
 “bal”: 0,
 “dly”: 0
 },
 “conn”: {
 “grp”: “LCL”,
 “in”: 1,
 “altgrp”: “OFF”,
 “altin”: 1
 }
 },
 “flt”: {
 “lc”: Boolean
 “lcf”: 100.2375,
 “hc”: Boolean
 “hcf”: 10023.74,
 “tf”: Boolean
 “mdl”: “TILT”,
 “tilt”: 0
 },
 “col”: 1,
 “name”: string
 “icon”: 1,
 “led”: Boolean
 “mute”: Boolean
 “fdr”: -144,
 “pan”: 0,
 “wid”: 100,
 “solosafe”: Boolean
 “mon”: “A”,
 “proc”: “GEDI”,
 “ptap”: “4”,
 “peq”: {
 “on”: Boolean
 “1g”: 0,
 “1f”: 99.68543,
 “1q”: 1.995882,
 …
 “3g”: 0,
 “3f”: 10016.53,
 “3q”: 1.995882

©Patrick-Gilles Maillot 65 WING OSC – V 0.3.2

 },
 “gate”: {
 “on”: Boolean
 “mdl”: “GATE”,
 “thr”: -40,
 “range”: 40,
 “att”: 10,
 “hld”: 10,
 “rel”: 199.4043,
 “acc”: 0,
 “ratio”: “1:3”
 },
 “gatesc”: {
 “type”: “OFF”,
 “f”: 1002.374,
 “q”: 1.995882,
 “src”: “SELF”,
 “tap”: “IN”
 },
 “eq”: {
 “on”: Boolean
 “mdl”: “STD”,
 “mix”: 100,
 “lg”: 0,
 “lf”: 80.19642,
 “lq”: 1.995882,
 “leq”: “SHV”,
 “1g”: 0,
 “1f”: 200,
 “1q”: 1.995882,
 …
 “4g”: 0,
 “4f”: 3990.524,
 “4q”: 1.995882,
 “hg”: 0,
 “hf”: 11999.27,
 “hq”: 1.995882,
 “heq”: “SHV”
 },
 “dyn”: {
 “on”: Boolean
 “mdl”: “COMP”,
 “mix”: 100,
 “gain”: 0,
 “thr”: -10,
 “ratio”: 3,
 “knee”: 3,
 “det”: “RMS”,
 “att”: 50,
 “hld”: 20,
 “rel”: 152.5652,
 “env”: “LOG”,
 “auto”: true
 },
 “dynxo”: {
 “depth”: 6,
 “type”: “OFF”,
 “f”: 1002.374
 },
 “dynsc”: {
 “type”: “OFF”,
 “f”: 1002.374,
 “q”: 1.995882,
 “src”: “SELF”,
 “tap”: “IN”
 },
 “preins”: {
 “on”: Boolean

©Patrick-Gilles Maillot 66 WING OSC – V 0.3.2

 “ins”: “NONE”
 },
 “main”: {
 “1”: {
 “on”: Boolean
 “lvl”: 0
 },
 “2”…“4”: {}
 },
 “send”: {
 “1”: {
 “on”: Boolean
 “lvl”: -144,
 “pon”: Boolean
 “ind”: Boolean
 “mode”: “PRE”,
 “plink”: Boolean
 “pan”: 0,
 “wid”: 100
 },
 “2”…“16”: {}
 },
 “postins”: {
 “on”: Boolean
 “mode”: “FX”,
 “ins”: “NONE”,
 “w”: 0
 },
 “tags”: string
 },
 “2”…“40”: {}
}
“aux”: {
 “1”: {
 “in”: {
 “set”: {
 “srcauto”: Boolean
 “altsrc”: Boolean
 “inv”: Boolean
 “trim”: 0,
 “bal”: 0
 },
 “conn”: {
 “grp”: “USB”,
 “in”: 1,
 “altgrp”: “OFF”,
 “altin”: 1
 }
 },
 “col”: 8,
 “name”: “USB”,
 “icon”: 605,
 “led”: Boolean
 “mute”: Boolean
 “fdr”: -144,
 “pan”: 0,
 “wid”: 100,
 “solosafe”: Boolean
 “mon”: “A”,
 “eq”: {
 “on”: Boolean
 “mix”: 100,
 “lg”: 0,
 “lf”: 80.19642,
 “lq”: 1.995882,
 “leq”: “SHV”,
 “1g”: 0,
 “1f”: 399.0524,

©Patrick-Gilles Maillot 67 WING OSC – V 0.3.2

 “1q”: 1.995882,
 “2g”: 0,
 “2f”: 2499.799,
 “2q”: 1.995882,
 “hg”: 0,
 “hf”: 11999.27,
 “hq”: 1.995882,
 “heq”: “SHV”
 },
 “preins”: {
 “on”: Boolean
 “ins”: “NONE”
 },
 “main”: {
 “1”: {
 “on”: Boolean
 “lvl”: 0
 },
 “2”…“4”: {}
 },
 “send”: {
 “1”: {
 “on”: Boolean
 “lvl”: -144,
 “pon”: Boolean
 “ind”: Boolean
 “mode”: “PRE”,
 “plink”: Boolean
 “pan”: 0,
 “wid”: 100
 },
 “2”…“16”: {}
 },
 “tags”: string
 },

“2”…“8”: {}
}
“bus”: {
 “1”: {
 “in”: {
 “set”: {
 “inv”: Boolean
 “trim”: 0,
 “bal”: 0
 }
 },
 “col”: 1,
 “name”: string
 “icon”: 0,
 “led”: Boolean
 “busmono”: Boolean
 “mute”: Boolean
 “fdr”: -144,
 “pan”: 0,
 “wid”: 100,
 “mon”: “A” | “B”
 “busmode”: “PRE”,
 “eq”: {
 “on”: Boolean
 “mdl”: “STD”,
 “mix”: 100,
 “lg”: 0,
 “lf”: 60.13884,
 “lw”: 0.99797,
 “leq”: “SHV”,
 “1g”: 0,
 “1f”: 129.8763,
 “1w”: 0.99797,

©Patrick-Gilles Maillot 68 WING OSC – V 0.3.2

 …
 “6g”: 0,
 “6f”: 6013.884,
 “6w”: 0.99797,
 “hg”: 0,
 “hf”: 11999.27,
 “hq”: 0.99797,
 “heq”: “SHV”,
 “tilt”: 0
 },
 “dyn”: {
 “on”: Boolean
 “mdl”: “COMP”,
 “mix”: 100,
 “gain”: 0,
 “thr”: -10,
 “ratio”: 3,
 “knee”: 3,
 “det”: “RMS”,
 “att”: 50,
 “hld”: 20,
 “rel”: 152.5652,
 “env”: “LOG”,
 “auto”: Boolean
 },
 “dynxo”: {
 “depth”: 6,
 “type”: “OFF”,
 “f”: 1002.374
 },
 “dynsc”: {
 “type”: “OFF”,
 “f”: 1002.374,
 “q”: 1.995882,
 “src”: “SELF”,
 “tap”: “BUS”
 },
 “preins”: {
 “on”: Boolean
 “ins”: “NONE”
 },
 “main”: {
 “1”: {
 “on”: Boolean
 “lvl”: 0
 },
 “2”…“4”: {}
 },
 “send”: {
 “1”: {
 “on”: Boolean
 “lvl”: -144
 },
 “2”…“8”: {}
 },
 “postins”: {
 “on”: Boolean
 “ins”: “NONE”
 },
 “tags”: string
 },
 “2”…“16”: {}
}
“main”: {
 “1”: {
 “in”: {
 “set”: {
 “inv”: Boolean

©Patrick-Gilles Maillot 69 WING OSC – V 0.3.2

 “trim”: 0,
 “bal”: 0
 }
 },
 “col”: 1,
 “name”: string
 “icon”: 509,
 “led”: Boolean
 “busmono”: Boolean
 “mute”: Boolean
 “fdr”: -144,
 “pan”: 0,
 “wid”: 100,
 “mon”: “A” | “B”
 “eq”: {
 “on”: Boolean
 “mdl”: “STD”,
 “mix”: 100,
 “lg”: 0,
 “lf”: 60.13884,
 “lw”: 0.99797,
 “leq”: “SHV”,
 “1g”: 0,
 “1f”: 129.8763,
 “1w”: 0.99797,
 …
 “6g”: 0,
 “6f”: 6013.884,
 “6w”: 0.99797,
 “hg”: 0,
 “hf”: 11999.27,
 “hq”: 0.99797,
 “heq”: “SHV”,
 “tilt”: 0
 },
 “dyn”: {
 “on”: Boolean
 “mdl”: “COMP”,
 “mix”: 100,
 “gain”: 0,
 “thr”: -10,
 “ratio”: 3,
 “knee”: 3,
 “det”: “RMS”,
 “att”: 50,
 “hld”: 20,
 “rel”: 152.5652,
 “env”: “LOG”,
 “auto”: Boolean
 },
 “dynxo”: {
 “depth”: 6,
 “type”: “OFF”,
 “f”: 1002.374
 },
 “dynsc”: {
 “type”: “OFF”,
 “f”: 1002.374,
 “q”: 1.995882,
 “src”: “SELF”,
 “tap”: “BUS”
 },
 “preins”: {
 “on”: Boolean
 “ins”: “NONE”
 },
 “send”: {
 “1”: {

©Patrick-Gilles Maillot 70 WING OSC – V 0.3.2

 “on”: Boolean
 “lvl”: 0
 },
 …
 “8”: {}
 },
 “postins”: {
 “on”: Boolean
 “ins”: “NONE”
 },
 “tags”: string
 },

“2”…“4”: {}
}
“mtx”: {
 “1”: {
 “in”: {
 “set”: {
 “inv”: Boolean
 “trim”: 0,
 “bal”: 0
 }
 },
 “dir”: {
 “1”: {
 “on”: Boolean
 “lvl”: -144,
 “inv”: Boolean
 “in”: “OFF”,
 “tap”: “PRE”
 },
 “2”: {}
 },
 “col”: 1,
 “name”: string
 “icon”: 0,
 “led”: Boolean
 “busmono”: Boolean
 “mute”: Boolean
 “fdr”: -144,
 “pan”: 0,
 “wid”: 100,
 “mon”: “A” | “B”
 “eq”: {
 “on”: Boolean
 “mdl”: “STD”,
 “mix”: 100,
 “lg”: 0,
 “lf”: 60.13884,
 “lw”: 0.99797,
 “leq”: “SHV”,
 “1g”: 0,
 “1f”: 129.8763,
 “1w”: 0.99797,
 …
 “6g”: 0,
 “6f”: 6013.884,
 “6w”: 0.99797,
 “hg”: 0,
 “hf”: 11999.27,
 “hq”: 0.99797,
 “heq”: “SHV”,
 “tilt”: 0
 },
 “dyn”: {
 “on”: Boolean
 “mdl”: “COMP”,
 “mix”: 100,

©Patrick-Gilles Maillot 71 WING OSC – V 0.3.2

 “gain”: 0,
 “thr”: -10,
 “ratio”: 3,
 “knee”: 3,
 “det”: “RMS”,
 “att”: 50,
 “hld”: 20,
 “rel”: 152.5652,
 “env”: “LOG”,
 “auto”: Boolean
 },
 “dynxo”: {
 “depth”: 6,
 “type”: “OFF”,
 “f”: 1002.374
 },
 “dynsc”: {
 “type”: “OFF”,
 “f”: 1002.374,
 “q”: 1.995882,
 “src”: “SELF”,
 “tap”: “BUS”
 },
 “preins”: {
 “on”: Boolean
 “ins”: “NONE”
 },
 “postins”: {
 “on”: Boolean
 “ins”: “NONE”
 },
 “dly”: {
 “on”: Boolean
 “m”: 0.1
 },
 “tags”: string
 },
 “2”…“8”: {}
}
“dca”: {
 “1”: {
 “name”: string
 “col”: 1
 “icon”: 0
 “led”: Boolean
 “mute”: Boolean
 “fdr”: -144,
 “mon”: “A” | “B”
 },
 “2”…“8”: {}
}
“mgrp”: {
 “1”: {
 “name”: string
 “mute”: Boolean
 }

“2”…“8”: {}
}
“fx”: {
 “1”: {
 “mdl”: “NONE”,
 “fxmix”: 100
 }

“2”…“16”: {}
}
“cards”: {
 “wlive”: {
 “mode”: “IND”,

©Patrick-Gilles Maillot 72 WING OSC – V 0.3.2

 “sorting”: “DATE”,
 “autoin”: “OFF”,
 “1”: {
 “cfg”: {
 “rectracks”: “32”,
 “playmode”: “PLAY”
 }
 },
 “2”: {}
 }
}
“play”: {}
“rec”: {

“path”: string
“resolution”: 16 | 24
“channels”: 1

}
}

©Patrick-Gilles Maillot 73 WING OSC – V 0.3.2

ce_data

ce_data contains all JSON structure elements representing the “Control Engine” settings for WING. The

ce_data class contains the objects: cfg, layer, user, gpio, safes, as shown below:

Note that for ease of access and programming using the native interface or OSC remote protocol, the

ce_data JSON tree structure is appended to the ae_data tree structure.

“$ctl”: {
“cfg”: {
 “lights”: {
 “btns”: 10,
 “leds”: 90,
 “meters”: 40,
 “rgbleds”: 50,
 “chlcds”: 60,
 “chlcdctr”: 50,
 “chedit”: 80,
 “main”: 80,
 “glow”: 0,
 “patch”: 0,
 “lamp”: 0

}
 “rta”: {

“homedisp”: “1/3”,
 “homecol”: “BL50”,
 “hometap”: “IN”,
 “eqdisp”: “1/4”,
 “eqcol”: “BL75”,
 “cheqtap”: “PRE”,
 “chflttap”: “PRE”,
 “eqdecay”: “MED”,
 “eqdet”: “PEAK”,
 “eqrange”: 30,
 “eqgain”: 0,
 “eqauto”: Boolean

}
“mtrfsc”: {
 “in”: “PRE”,
 “bus”: “POST”,
 “main”: “POST”,
 “mtx”: “POST”,
 “dca”: “PRE”
}
“mtrpage”: {
 “in”: “PRE”,
 “bus”: “POST”,
 “main”: “POST”,
 “mtx”: “POST”,
 “dca”: “PRE”
}
“mainmtr”: string,

©Patrick-Gilles Maillot 74 WING OSC – V 0.3.2

“mainpos”: “AUTO”,
“soloexcl”: Boolean,
“selfsolo”: Boolean,
“solofsel”: Boolean,
“sof2solo”: Boolean,
“layerlinkl”: Boolean,
“layerlinkr”: Boolean,
“autoview”: Boolean,
“csctouch”: Boolean,
“autosel_L”: Boolean,
“autosel_C”: Boolean,
“autosel_R”: Boolean,
“fdrrsel”: Boolean,
“fdrres”: “AUTO”,
“fdrspd”: “MED”,
“soffdr”: “L/C”,
“srcdisp”: Boolean,
“lockmtr”: Boolean,
“timefmt”: “12H” | “24H”,
“datefmt”: “YMD”,
“filesort”: “A->Z”

 }
“layer”: {
 “L” : {
 “sel”: 1
 “1”: {
 “ofs”: 0
 “name”: “CH1-12” | “CH13-24” | “CH25-36” | “CH37-AUX” |

 “BUSES” | “USER1” | “USER2”
 “1”: {
 “type”: “CH”,
 “i”: 1,
 “dst”: 1

}
 …
 “24”: {}
 }
 “2”…”7”: {}

}
 “C”: {
 “sel”: 4
 “1”: {
 “ofs”: 0
 “name”: “DCA” | “AUX” | “BUSES” | “USER1” | “USER2”
 “1”: {
 “type”: “OFF” | “DCA”
 “i”: 1,
 “dst”: 1

}
…
“16”: {}

 }
 “2”…”6”: {}

}
 “R”: {
 “sel”: 1
 “1”: {
 “ofs”: 0
 “name”: “MAIN” | “DCA” | “CH1-40” | “AUX” | “BUSES” |

 “USER1” | “USER2”
 “1”: {
 “type”: “OFF” | “BUS” | “DCA” | “CHI” |
 “i”: 1,
 “dst”: 1

}
…
“40”: {}

©Patrick-Gilles Maillot 75 WING OSC – V 0.3.2

}
 “2”…”7”: {}

}
}
“user”: {
 “sel”: 1
 “mode”: “USER”
 “cmode”: “HA”
 “usermode”: “BUS”
 “tapflash”: “ON”
 “gpio”: {

“1”: {
“bu”: {

“mode”: “OFF”,
“name”: “GPIO 1”

}
},
“2”…”4”: {}

 }
 “user”: {
 “1”: {

“led”: Boolean,
 “col”: 1,
 “enc”: {
 “mode”: “OFF”,
 “name”: string
 },
 “bu”: {
 “mode”: “OFF”,
 “name”: string
 },
 “bd”: {
 “mode”: “OFF”,
 “name”: string
 }
 }
 “2”…”3”: {}
 }
 “daw1”: {
 “1”: {
 “bu”: {
 “mode”: “OFF”
 “name”: string
 “btn”: string
 }
 “bd”: {
 “mode”: “OFF”
 “name”: string
 “btn”: string
 }
 }
 “2”…”4”: {}
 }
 “daw2…daw4”: {}
 “1”: {
 “1”: {

“led”: Boolean,
 “col”: 1,
 “enc”: {
 “mode”: “DCA”,
 “name”: string
 “dca”: string
 },
 “bu”: {
 “mode”: “OFF”,
 “name”: string
 },
 “bd”: {

©Patrick-Gilles Maillot 76 WING OSC – V 0.3.2

 “mode”: “OFF”,
 “name”: string
 }
 }
 “2”…”4”{}
 }
 “2”…”16”: {}
 “cuser”: {

“1”: 1
“2”: 1
“3”: 1

 }
}
“gpio”: {

 “1”: {
 “mode”: “TGLNO”,
 “gpstate”: false
 },
 “2”…”4”: {}

}
“safes”: {
 “ch”: {

“1”: Boolean
…
“40”: Boolean

}
 “aux”: {

“1”: Boolean
…
“8”: Boolean

}
 “bus”: {

“1”: Boolean
…
“16”: Boolean

}
 “main”: {

“1”: Boolean
…
“4”: Boolean

}
 “mtx”: {

“1”: Boolean
…
“8”: Boolean

}
 “fx”: {

“1”: Boolean
…
“16”: Boolean

}
 “routin”: {

“1”: Boolean
…
“13”: Boolean

}
 “routout”: {

“1”: Boolean
…
“11”: Boolean

}
 “cfg”: {

“group”: Boolean
“audio”: Boolean
 “surface”: Boolean

}
 “area”: {

©Patrick-Gilles Maillot 77 WING OSC – V 0.3.2

“L”: Boolean
“C”: Boolean
“R”: Boolean

}
 “data”: {

“1”: Boolean
…
“9”: Boolean

}
}
“daw”: {
 “on”: true,
 “conn”: “USB”,
 “emul”: “MCU”,
 “config”: “MSTR2EXT”,
 “ccup”: Boolean,
 “preset”: “-”
}
“midi”: {
 “enchctl”: “OFF”,
 “enfxctl”: “OFF”,
 “encustctl”: “OFF”,
 “ensysex”: “USB”
}
“OSC”: {
 “ronly”: Boolean
}

}

More JSON files
WING desk provides more JSON files. Indeed, JSON format is also used to save/store channel, library, and

effect presets. These files are created as you save presets and libraries that help you setup your system

faster down the road.

	Introduction
	General features of the WING console

	Sources vs. Inputs
	WING Internal Data
	WING File System
	Remote communication with WING
	Number of simultaneously connected applications

	Access to WING Internal Data from remote programs
	OSC Remote Protocol
	OSC Data Types
	WING OSC Messages
	Reading (Get) Parameter and Node data
	Receiving OSC data on a specific port
	Writing (Set) Parameter and Node data
	Single Parameters
	Node Data

	OSC: Special Cases
	Dynamic JSON Structure changes
	OSC Tag Type ‘blob’ use
	Subscribing to OSC Data

	Effects and Plugins
	Plugins
	Effects

	Effects and Plugins’ Parameters list
	Standard effects
	Premium effects
	Filter plugins
	Gate plugins
	EQ plugins
	Compressor plugins

	Appendix: WING Icons
	Appendix: WING Colors
	Appendix: WING Snapshot and JSON Data Structure:
	Global Snapfile
	Descriptionn
	scopes
	ae_data
	ce_data

	More JSON files

